Optimal Piecewise-based Mechanism for Collecting Bounded Numerical Data under Local Differential Privacy

Authors: Ye Zheng, Sumita Mishra, Yidan Hu

LDP Mechanisms

- Randomization algorithm $\mathcal{M}: \mathcal{D} \to \widetilde{\mathcal{D}}$
 - quantifiable privacy for data $x \in \mathcal{D}$

$$\forall x_1, x_2 \in \mathcal{D}, \forall y \in \widetilde{\mathcal{D}} \quad \max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

Distinguishability of x_1 and x_2 (sensitive data) from y (randomized data)

LDP Mechanisms

- Randomization algorithm $\mathcal{M}: \mathcal{D} \to \widetilde{\mathcal{D}}$
 - quantifiable privacy for data $x \in \mathcal{D}$

$$\forall x_1, x_2 \in \mathcal{D}, \forall y \in \widetilde{\mathcal{D}} \quad \max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

Distinguishability of x_1 and x_2 (sensitive data) from y (randomized data)

LDP Mechanisms

- Randomization algorithm $\mathcal{M}: \mathcal{D} \to \widetilde{\mathcal{D}}$
 - quantifiable privacy for data $x \in \mathcal{D}$

$$\forall x_1, x_2 \in \mathcal{D}, \forall y \in \widetilde{\mathcal{D}} \quad \max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace + truncation: $[0,1] \rightarrow [0,1]$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace + truncation: $[0,1] \rightarrow [0,1]$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace + truncation: $[0,1] \rightarrow [0,1]$

0

 x_1

Smaller output Useful for distribution estimation i.e. $dist\{x_1, x_2, \cdots\}$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace + truncation: $[0,1] \rightarrow [0,1]$

Staircase: $[0,1] \rightarrow (-\infty, +\infty)$

Piecewise mechanism: $[0,1] \rightarrow [-C_{\varepsilon}, C_{\varepsilon}]$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace + truncation: $[0,1] \rightarrow [0,1]$

Staircase: $[0,1] \rightarrow (-\infty, +\infty)$

Piecewise mechanism: $[0,1] \rightarrow [-C_{\varepsilon}, C_{\varepsilon}]$

Laplace mechanism: $[0,1] \rightarrow (-\infty, +\infty)$

Laplace + truncation: $[0,1] \rightarrow [0,1]$

Staircase: $[0,1] \rightarrow (-\infty, +\infty)$

Piecewise mechanism: $[0,1] \rightarrow [-C_{\varepsilon}, C_{\varepsilon}]$

Piecewise + truncation: $[0,1] \rightarrow [0,1]$

• • •

Privacy: LDP with the same ε

Utility: Different errors

Laplace + truncation:
$$[0,1] \rightarrow [0,1]$$

Staircase:
$$[0,1] \rightarrow (-\infty, +\infty)$$

Privacy: LDP with the same ε

Q: What is the optimal LDP mechanism?

Laplace + truncation:
$$[0,1] \rightarrow [0,1]$$

Utility: Different errors

Q: What is the **optimal piecewise-based** mechanism?

- 3-piecewise distributions on bounded numerical domain $\mathcal{D} \to \widetilde{\mathcal{D}}$
 - given input x, sample output y from a distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{\varepsilon} & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}] \\ p_{\varepsilon} & \text{if } y \in \widetilde{\mathcal{D}} \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}] \end{cases}$$

3-piecewise distributions on bounded numerical domain $\mathcal{D} \to \widetilde{\mathcal{D}}$

- given input x, sample output y from a distribution

Sampling probability depends on ε

if
$$y \in \widetilde{\mathcal{D}} \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}]$$

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{\varepsilon} & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}] \\ \frac{p_{\varepsilon}}{\exp(\varepsilon)} & \text{if } y \in \widetilde{\mathcal{D}} \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}] \end{cases}$$

• Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different p_{ε} , $l_{x,\varepsilon}$, $r_{x,\varepsilon}$)

- Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different p_{ε} , $l_{x,\varepsilon}$, $r_{x,\varepsilon}$)
 - different errors, but without optimality

- 3-piecewise distributions on boun
 - given input x, sample output y from

NOT enough to study optimality of piecewise-based mechanism

- only 3 pieces, two probabilities

- Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different p_{ε} , $l_{x,\varepsilon}$, $r_{x,\varepsilon}$)
 - different errors, but without optimality

- 3-piecewise distributions on boun
 - given input x, sample output y from

NOT enough to study optimality of piecewise-based mechanism

- only 3 pieces, two probabilities
- piecewise distribution can have more pieces and probabilities

- Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different p_{ε} , $l_{x,\varepsilon}$, $r_{x,\varepsilon}$)
 - different errors, but without optimality

Generalized Piecewise-based Mechanism

Most generalized version: *m*-piecewise distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \le e^{\varepsilon} \text{(LDP constraint)}$$

if
$$y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}]$$

if $y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}]$
...
if $y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$

Generalized Piecewise-based Mechanism

Most generalized version: *m*-piecewise distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \le e^{\varepsilon} \text{(LDP constraint)}$$

if
$$y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}]$$

if $y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}]$
...
if $y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$

Error (data utility):

$$\mathcal{L}(y, x)$$

$$\uparrow$$

$$\mathcal{L}(y, x) \coloneqq |y - x|^p$$

Generalized Piecewise-based Mechanism

Most generalized version: *m*-piecewise distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\begin{aligned} &\text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ &\text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ &\dots \end{aligned}$$

$$\\ &\text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{(LDP constraint)}$$

Expected error:

$$\int_{\widetilde{D}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Optimal Piecewise-based Mechanism

Most generalized version: *m*-piecewise distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\begin{aligned} &\text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ &\text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ &\cdots \\ &\text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{aligned}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{(LDP constraint)}$$

Expected error:

$$\min_{\mathcal{M}: p_i, l_i, r_i} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Find \mathcal{M} to minimize the error at x

Optimal Piecewise-based Mechanism

■ **Most generalized version:** *m*-piecewise distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{ (LDP constraint)}$$

Expected error:

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Find \mathcal{M} to minimize the worst-case error

Optimal Piecewise-based Mechanism

Most generalized version: *m*-piecewise distribution

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

if
$$y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}]$$

if $y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}]$
...
if $y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{ (LDP constraint)}$$

Solved \mathcal{M} is the optimal piecewise-based mechanism

Mathematically \equiv to find the **optimal** piecewise distribution under the LDP constraint

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Find \mathcal{M} to minimize the worst-case error

Challenges & Proofs

- Challenges
 - 1. min-max problem & multiple variables
 - 2. optimal results only for a specific m

Challenges & Proofs

- Challenges
 - 1. min-max problem & multiple variables
 - 2. optimal results only for a specific m

Inner max has a closed form Worst-case from $x = \text{endpoints of } \mathcal{D}$

Reduced to:

minimization problem

Challenges & Proofs

- Challenges
 - 1. min-max problem & multiple variables
 - 2. optimal results only for a specific m

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

$$\uparrow$$

$$2. i \in [m]$$
1. variables p_i, l_i, r_i

NOT Manually "Solvable" When $m \geq 4$

• When $m \ge 4$: Too many variables & non-linear

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

NOT Manually "Solvable" When $m \geq 4$

- When $m \ge 4$: Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
 - limitation: needs given ε

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

- limitation: cannot provide closed-form \mathcal{M} : p_i , l_i , r_i (only optimal values)
- can be used to analyze optimality

NOT Manually "Solvable" When $m \geq 4$

- When $m \ge 4$: Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
 - limitation: needs given ε
 - limitation: cannot provide closed-form \mathcal{M} : p_i , l_i , r_i
 - can be used to analyze optimality

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

Monte Carlo testing: Optimality under 10^4 random ε

Hypothesis. For any domain $\mathcal{D} \to \mathcal{D}$, under error metrics $\mathcal{L}(y, x) \coloneqq |y - x|$ and $\mathcal{L}(y, x) \coloneqq (y - x)^2$, the optimal piecewise-based mechanism falls into 3-piecewise mechanism.

Manually (Analytically) Solvable When m=3

- When $m \geq 4$: Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
 - limitation: needs given ε
 - limitation: cannot provide closed-form \mathcal{M} : p_i , l_i , r_i
 - can be used to analyze optimality

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

Monte Carlo testing: Optimality under 10^4 random ε

Hypothesis. For any domain $\mathcal{D} \to \mathcal{D}$, under error metrics $\mathcal{L}(y, x) \coloneqq |y - x|$ and $\mathcal{L}(y, x) \coloneqq (y - x)^2$, the optimal piecewise-based mechanism falls into 3-piecewise mechanism.

different from existing instantiations \leftarrow (closed-form \mathcal{M} can be manually solved)

Closed Form Mechanism

Optimal $\mathcal{M}: [0,1) \to [0,1)$ under $\mathcal{L} := |y-x|$

$$pdf[\mathcal{M}(x) = y] = \begin{cases} \exp\left(\frac{\varepsilon}{2}\right) & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}) \\ \exp\left(-\frac{\varepsilon}{2}\right) & \text{if } y \in [0,1) \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}) \end{cases} \qquad [l_{x,\varepsilon}, r_{x,\varepsilon}) = \begin{cases} [0,2C) & \text{if } x \in [0,C) \\ x + [-C,C) & \text{if } x \in [C,1-C) \\ [1-2C,1) & \text{otherwise} \end{cases} \qquad C = \frac{\exp(\varepsilon/2) - 1}{2(\exp(\varepsilon) - 1)}$$

$$[l_{x,\varepsilon}, r_{x,\varepsilon}) = \begin{cases} [0,2C) & \text{if } x \in [0,C) \\ x + [-C,C) & \text{if } x \in [C,1-C) \\ [1-2C,1) & \text{otherwise} \end{cases} \qquad C = \frac{\exp(\varepsilon/2) - 1}{2(\exp(\varepsilon) - 1)}$$

When $\varepsilon = 1$:

Comparison of Expected Errors

Lowest error

Circular Domain

• Different meaning of distance, e.g. distance $(0, 2\pi) = 0$

$$\mathcal{L} \to \mathcal{L}_{mod}$$

$$\mathcal{L}_{\text{mod}}(y, x) \coloneqq \min(\mathcal{L}(y, x), \mathcal{L}(y, 2\pi - x))$$

Circular Domain

• Different meaning of distance, e.g. distance $(0, 2\pi) = 0$

$$\mathcal{L} \to \mathcal{L}_{mod}$$

$$\mathcal{L}_{\text{mod}}(y, x) \coloneqq \min(\mathcal{L}(y, x), \mathcal{L}(y, 2\pi - x))$$

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in [0, 2\pi]} \int_{\widetilde{\mathcal{D}}} \mathcal{L}_{\mathbf{mod}}(y, x) \cdot p df[\mathcal{M}(x) = y] dy$$

Circular Domain

• Different meaning of distance, e.g. distance $(0, 2\pi) = 0$

Linking to problems in the classical domain

$$\frac{\text{min-max}}{\text{under } \mathcal{L}_{\text{mod}}} = \frac{\text{min under}}{\mathcal{L} \text{ at } \pi} = \frac{\text{min under}}{\mathcal{L}_{\text{mod}} \text{ at } x} = \frac{\text{min under}}{\mathcal{L} \text{ at } \pi} + \text{Transform}$$

$$p_i \qquad \qquad l_{i,x}^{\text{mod}}, r_{i,x}^{\text{mod}}$$

Closed Form Mechanism

Optimal $\mathcal{M}: [0,2\pi) \to [0,2\pi)$ under \mathcal{L}_{mod}

$$pdf[\mathcal{M}(x) = y] = \begin{cases} \frac{1}{2\pi} \exp\left(\frac{\varepsilon}{2}\right) & \text{if } y \in [l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}}) \\ \frac{1}{2\pi} \exp\left(-\frac{\varepsilon}{2}\right) & \text{if } y \in [0,2\pi) \setminus [l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}}) \end{cases} \qquad \begin{bmatrix} l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}} \right) = [x - C, x + C) \mod 2\pi$$

$$\left[l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}}\right] = \left[x - C, x + C\right) \mod 2\pi$$

$$C = \pi \frac{\exp(\varepsilon/2) - 1}{\exp(\varepsilon) - 1}$$

When $\varepsilon = 1$:

Comparison of Expected Errors

Lowest error

^{*} Differential Privacy for Directional Data, CCS'21

Optimal Piecewise-based Mechanism for Collecting Bounded Numerical Data under LDP

Optimal Piecewise-based Mechanism

Most generalized version: m-piecewise distribution

Challenges & Proofs

Manually (Analytically) Solvable When m = 3

- lacksquare When $m \geq 4$: Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
 - limitation: needs given ε

Ye Zheng

- limitation: cannot provide closed-form \mathcal{M} : p_i , l_i , r_i
- can be used to analyze optimality

Monte Carlo testing: Optimality under 10^4 random ε

 $\max_{x \in \{a,b\}} \left| p_i \right| \mathcal{L}(y,x) \, \mathrm{d}y$

Hypothesis. For any domain $\mathcal{D} \to \mathcal{D}$, under error metrics $\mathcal{L}(y,x) \coloneqq |y-x|$ and $\mathcal{L}(y,x) \coloneqq |y-x|$, the optimal piecewise-based mechanism falls into 3-piecewise mechanism.

different from existing instantiations ←
(closed-form M can be manually solved)

Optimal Piecewise-based Mechanism under LDP

Circular Domain

• Different meaning of distance, e.g. distance $(0, 2\pi) = 0$

• Linking to problems in the classical domain

Ye Zheng Optimal Piecewise-based Mechanism under LDP 40

Optimality of LDP Mechanisms

- Optimal error (utility) under privacy level ε
 - many mechanisms are optimal in **order-of-magnitude**, e.g. $\Omega(\frac{1}{\sqrt{n}})$ for the counting query*
 - the staircase mechanism is optimal for **domain** $[0,1] \rightarrow (-\infty, +\infty)^{\dagger}$
 - the geometric mechanism is universally optimal if any **post-processing** is allowed, e.g. truncation^{††}

^{*} The Complexity of Differential Privacy, book section of "Tutorials on the Foundations of Cryptography", 2017

[†] The Staircase Mechanism in Differential Privacy, journal version of ISIT'14

^{††} Universally Utility-maximizing Privacy Mechanisms, STOC'09

Optimality of LDP Mechanisms

- Optimal error (utility) under privacy level ε
 - many mechanisms are optimal in **order-of-magnitude**, e.g. $\Omega(\frac{1}{\sqrt{n}})$ for the counting query*
 - the staircase mechanism is optimal for domain $[0,1] \rightarrow (-\infty, +\infty)^{\dagger}$
 - the geometric mechanism is universally optimal if any **post-processing** is allowed, e.g. truncation^{††}
- Specify the utility model (conditions for optimality)

1

Error metric

Err(truth, rand) $Err \text{ or } \Omega(Err)$ 2

Data domain & type of mechanisms

Discrete / cont. $\mathcal{D} \to \widetilde{\mathcal{D}}$ Laplace-shape / piecewise Post-processing

Laplace + truncation: $[0,1] \rightarrow [0,1]$ $Pr[0] = \frac{1}{2}$

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy = \max_{x \in \mathcal{D}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) dy \qquad (m\text{-piecewise distribution})$$

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy = \max_{x \in \mathcal{D}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) dy \qquad (m\text{-piecewise distribution})$$

convex function w.r.t x

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}}^{\mathcal{L}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy = \max_{x \in \mathcal{D}} \sum_{i=1}^{m} p_{i} \int_{l_{i}}^{r_{i}} \mathcal{L}(y, x) dy \qquad (m\text{-piecewise distribution})$$

$$= \max_{x \in \{a, b\}} \sum_{i=1}^{m} p_{i} \int_{l_{i}}^{r_{i}} \mathcal{L}(y, x) dy \qquad (\text{maximum principle})$$

Worst-case error is achieved at endpoints

• Optimal #piece is m if optimal m-piecewise = (m+1)-piecewise

Error from an arbitrary piece $(\geq 0 \text{ variable})$

if:
$$\min_{e_1, e_2, e_3} e_1 + e_2 + e_3 = \min_{e_1, e_2, e_3, e_4} e_1 + e_2 + e_3 + e_4$$

i.e. the error can't be lowered by arbitrary ≥ 0 variable

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}}^{\mathcal{L}(y,x)} \cdot pdf[\mathcal{M}(x)] = \underbrace{\int_{-\infty}^{\infty} \mathcal{L}(y,x) \cdot pdf[\mathcal{M}(x)]}_{\text{After merging redundant pieces}}$$

• Optimal #piece is m if optimal m-piecewise = (m+1)-piecewise

Error from an arbitrary piece ∠ (≥ 0 variable)

if:
$$\min_{e_1, e_2, e_3} e_1 + e_2 + e_3 = \min_{e_1, e_2, e_3, e_4} e_1 + e_2 + e_3 + e_4$$

i.e. the error can't be lowered by arbitrary ≥ 0 variable

then:
$$= \min_{e_1, e_2, e_3, e_4, e_5} e_1 + e_2 + e_3 + e_4 + e_5$$

otherwise, $e_4 \leftarrow e_4 + e_5$ can further lower the error