# Optimal Piecewise-based Mechanism for Collecting Bounded Numerical Data under Local Differential Privacy

Authors: Ye Zheng, Sumita Mishra, Yidan Hu



#### LDP Mechanisms

- Randomization algorithm  $\mathcal{M}: \mathcal{D} \to \widetilde{\mathcal{D}}$ 
  - quantifiable privacy for data  $x \in \mathcal{D}$

$$\forall x_1, x_2 \in \mathcal{D}, \forall y \in \widetilde{\mathcal{D}} \quad \max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

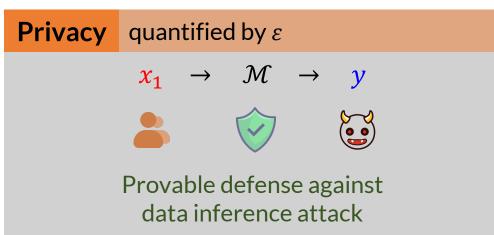
Distinguishability of  $x_1$  and  $x_2$  (sensitive data) from y (randomized data)

#### LDP Mechanisms

- Randomization algorithm  $\mathcal{M}: \mathcal{D} \to \widetilde{\mathcal{D}}$ 
  - quantifiable privacy for data  $x \in \mathcal{D}$

$$\forall x_1, x_2 \in \mathcal{D}, \forall y \in \widetilde{\mathcal{D}} \quad \max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

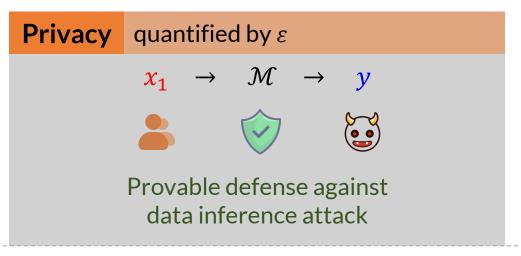
Distinguishability of  $x_1$  and  $x_2$  (sensitive data) from y (randomized data)



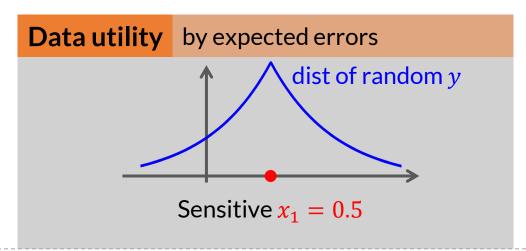
#### LDP Mechanisms

- Randomization algorithm  $\mathcal{M}: \mathcal{D} \to \widetilde{\mathcal{D}}$ 
  - quantifiable privacy for data  $x \in \mathcal{D}$

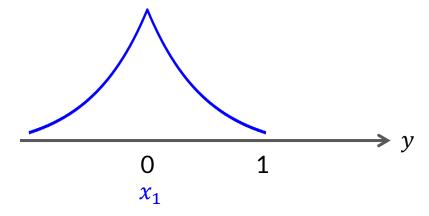
$$\forall x_1, x_2 \in \mathcal{D}, \forall y \in \widetilde{\mathcal{D}} \quad \max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

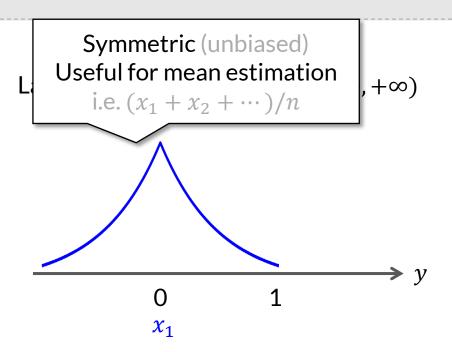




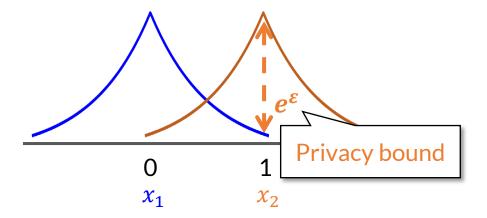


Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



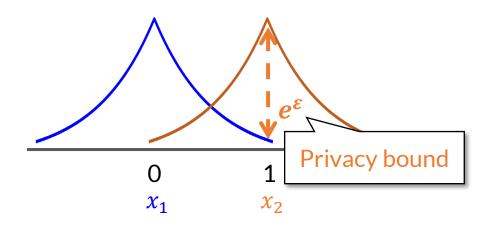


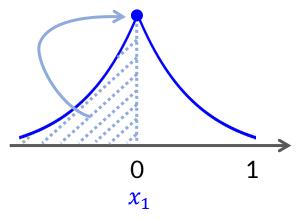
Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



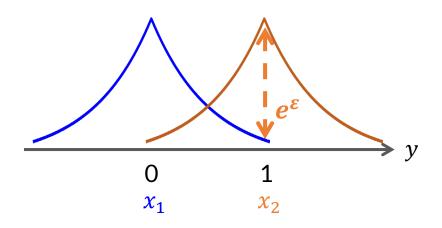
Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 

Laplace + truncation:  $[0,1] \rightarrow [0,1]$ 

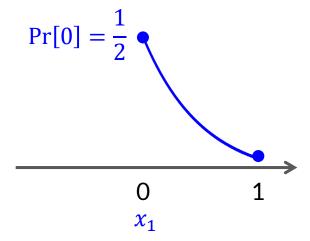




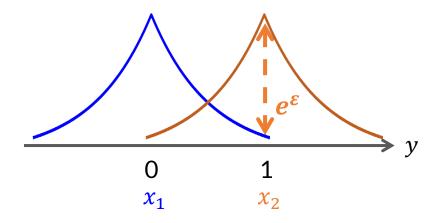
Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



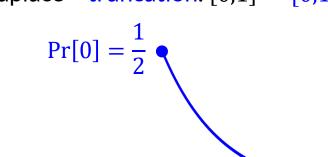
Laplace + truncation:  $[0,1] \rightarrow [0,1]$ 



Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



Laplace + truncation:  $[0,1] \rightarrow [0,1]$ 

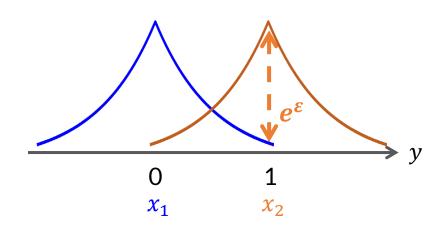


0

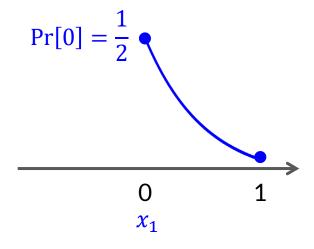
 $x_1$ 

Smaller output Useful for distribution estimation i.e.  $dist\{x_1, x_2, \cdots\}$ 

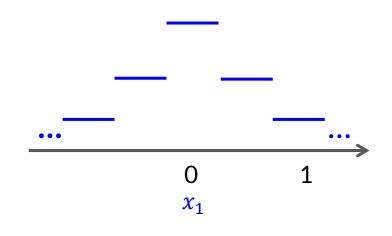
Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



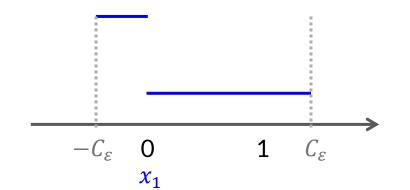
Laplace + truncation:  $[0,1] \rightarrow [0,1]$ 



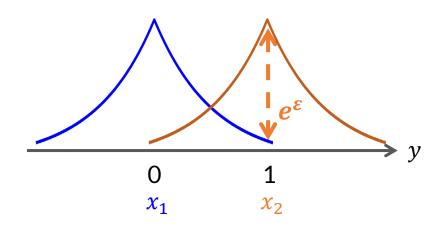
Staircase:  $[0,1] \rightarrow (-\infty, +\infty)$ 



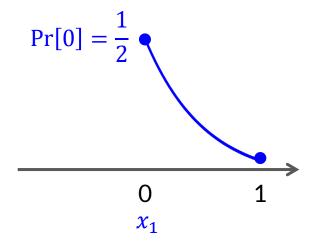
Piecewise mechanism:  $[0,1] \rightarrow [-C_{\varepsilon}, C_{\varepsilon}]$ 



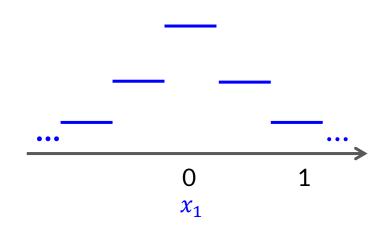
Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



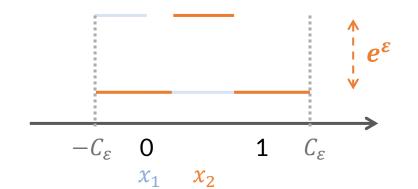
Laplace + truncation:  $[0,1] \rightarrow [0,1]$ 



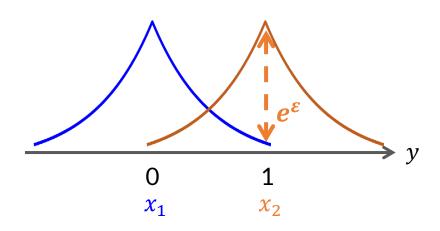
Staircase:  $[0,1] \rightarrow (-\infty, +\infty)$ 



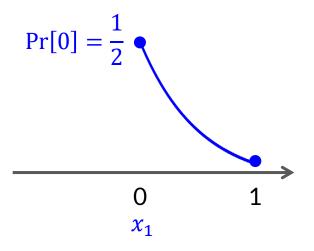
Piecewise mechanism:  $[0,1] \rightarrow [-C_{\varepsilon}, C_{\varepsilon}]$ 



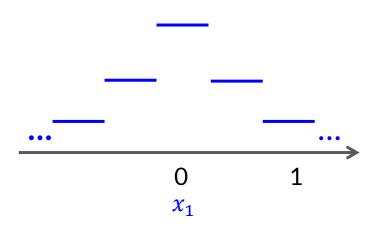
Laplace mechanism:  $[0,1] \rightarrow (-\infty, +\infty)$ 



Laplace + truncation:  $[0,1] \rightarrow [0,1]$ 

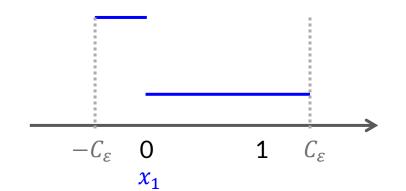


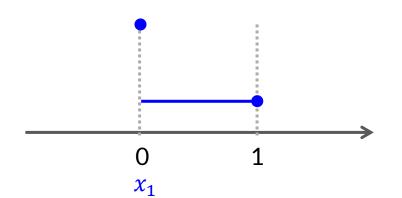
Staircase:  $[0,1] \rightarrow (-\infty, +\infty)$ 



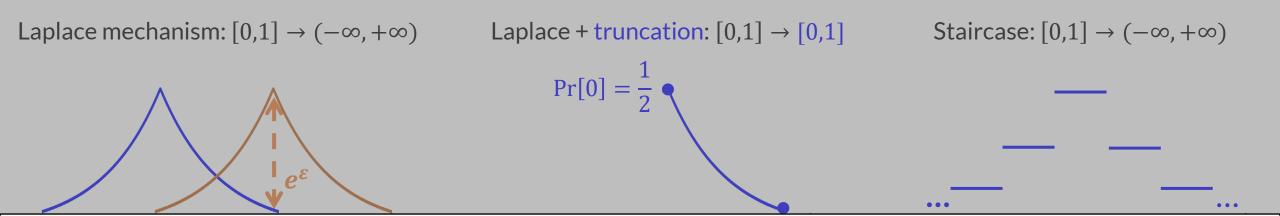
Piecewise mechanism:  $[0,1] \rightarrow [-C_{\varepsilon}, C_{\varepsilon}]$ 

Piecewise + truncation:  $[0,1] \rightarrow [0,1]$ 



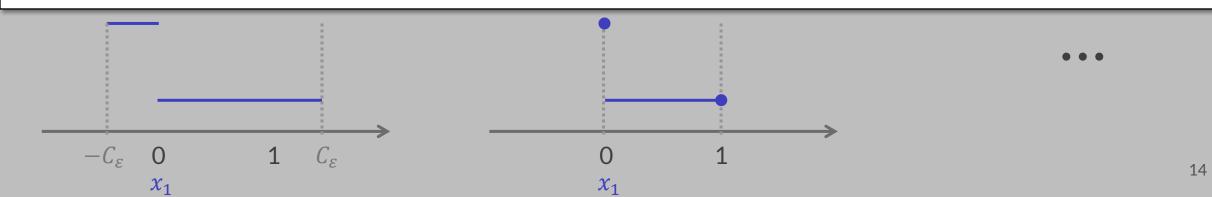


• • •



Privacy: LDP with the same  $\varepsilon$ 

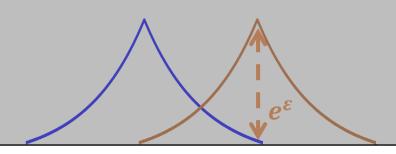
**Utility: Different errors** 

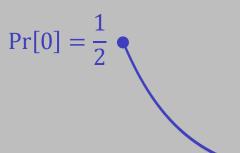




Laplace + truncation: 
$$[0,1] \rightarrow [0,1]$$

Staircase: 
$$[0,1] \rightarrow (-\infty, +\infty)$$



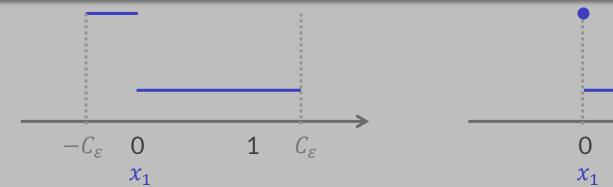


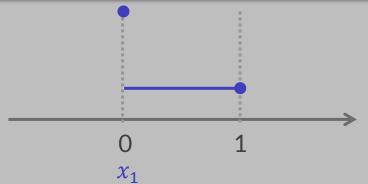




Privacy: LDP with the same  $\varepsilon$ 

Q: What is the optimal LDP mechanism?

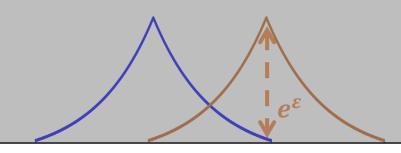


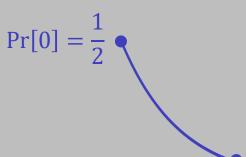




Laplace + truncation: 
$$[0,1] \rightarrow [0,1]$$









#### **Utility: Different errors**

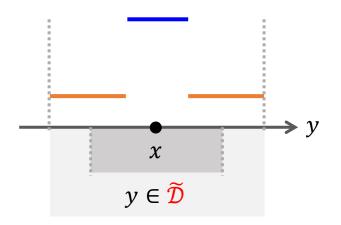
Q: What is the **optimal piecewise-based** mechanism?







- 3-piecewise distributions on bounded numerical domain  $\mathcal{D} \to \widetilde{\mathcal{D}}$ 
  - given input x, sample output y from a distribution

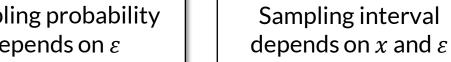


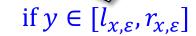
$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{\varepsilon} & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}] \\ p_{\varepsilon} & \text{if } y \in \widetilde{\mathcal{D}} \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}] \end{cases}$$

3-piecewise distributions on bounded numerical domain  $\mathcal{D} \to \widetilde{\mathcal{D}}$ 

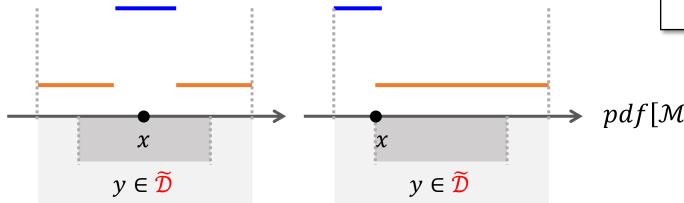
- given input x, sample output y from a distribution

Sampling probability depends on  $\varepsilon$ 

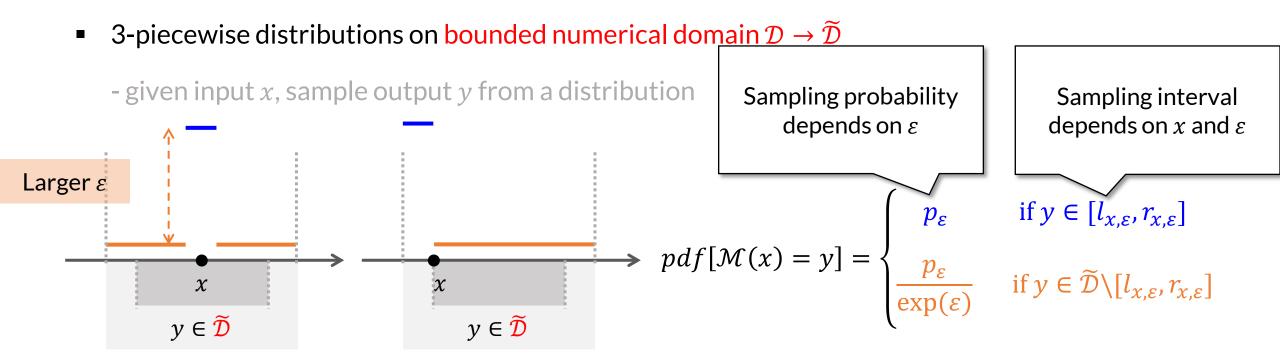




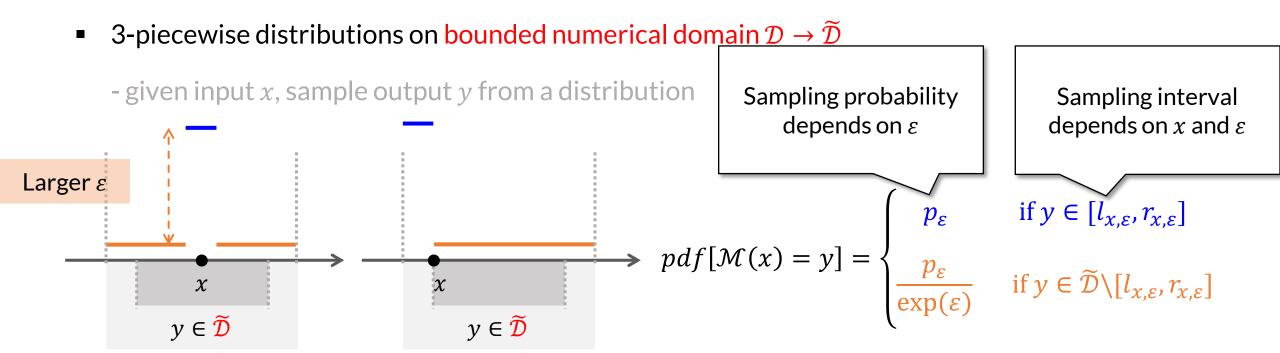
if 
$$y \in \widetilde{\mathcal{D}} \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}]$$



$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{\varepsilon} & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}] \\ \frac{p_{\varepsilon}}{\exp(\varepsilon)} & \text{if } y \in \widetilde{\mathcal{D}} \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}] \end{cases}$$



• Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different  $p_{\varepsilon}$ ,  $l_{x,\varepsilon}$ ,  $r_{x,\varepsilon}$ )

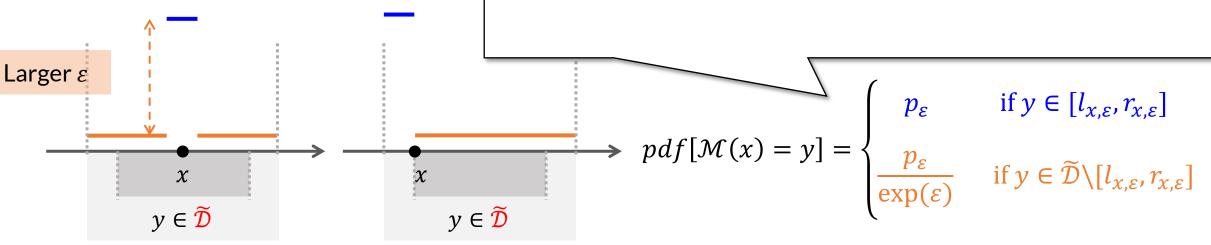


- Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different  $p_{\varepsilon}$ ,  $l_{x,\varepsilon}$ ,  $r_{x,\varepsilon}$ )
  - different errors, but without optimality

- 3-piecewise distributions on boun
  - given input x, sample output y from

NOT enough to study optimality of piecewise-based mechanism

- only 3 pieces, two probabilities

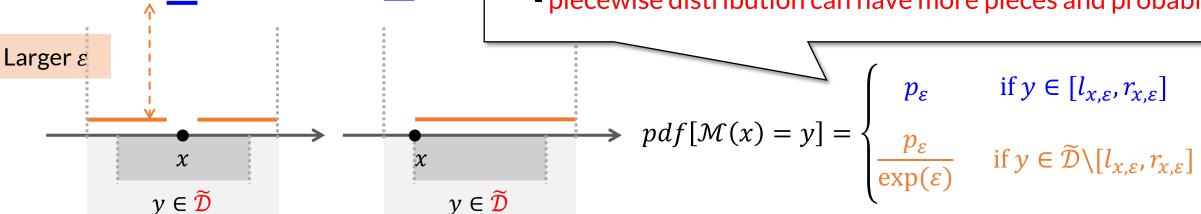


- Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different  $p_{\varepsilon}$ ,  $l_{x,\varepsilon}$ ,  $r_{x,\varepsilon}$ )
  - different errors, but without optimality

- 3-piecewise distributions on boun
  - given input x, sample output y from

NOT enough to study optimality of piecewise-based mechanism

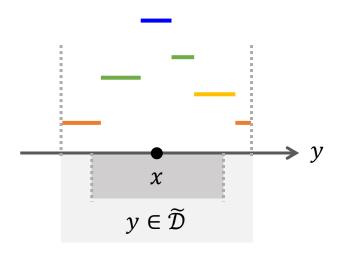
- only 3 pieces, two probabilities
- piecewise distribution can have more pieces and probabilities



- Instantiations: PM [ICDE'19], SW [SIGMOD'20], PTT [TMC'24] (design different  $p_{\varepsilon}$ ,  $l_{x,\varepsilon}$ ,  $r_{x,\varepsilon}$ )
  - different errors, but without optimality

#### Generalized Piecewise-based Mechanism

**Most generalized version:** *m*-piecewise distribution



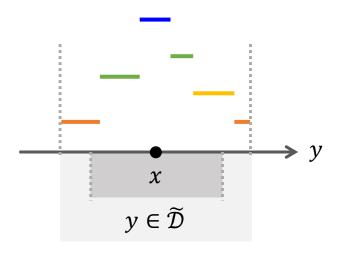
$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \le e^{\varepsilon} \text{(LDP constraint)}$$

if 
$$y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}]$$
  
if  $y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}]$   
...  
if  $y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$ 

#### Generalized Piecewise-based Mechanism

**Most generalized version:** *m*-piecewise distribution



$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \le e^{\varepsilon} \text{(LDP constraint)}$$

if 
$$y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}]$$
  
if  $y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}]$   
...  
if  $y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$ 

Error (data utility):

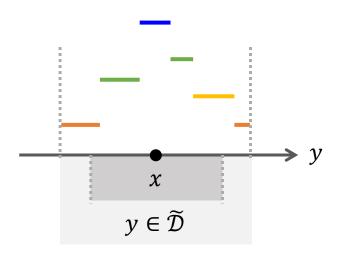
$$\mathcal{L}(y, x)$$

$$\uparrow$$

$$\mathcal{L}(y, x) \coloneqq |y - x|^p$$

#### Generalized Piecewise-based Mechanism

**Most generalized version:** *m*-piecewise distribution



$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\begin{aligned} &\text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ &\text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ &\dots \end{aligned}$$
 
$$\\ &\text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$$

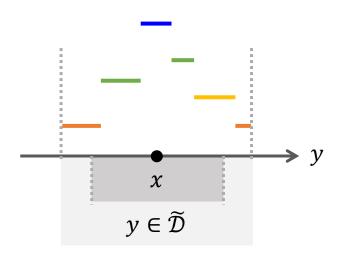
$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{(LDP constraint)}$$

Expected error:

$$\int_{\widetilde{D}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

## Optimal Piecewise-based Mechanism

**Most generalized version:** *m*-piecewise distribution



$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\begin{aligned} &\text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ &\text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ &\cdots \\ &\text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{aligned}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{(LDP constraint)}$$

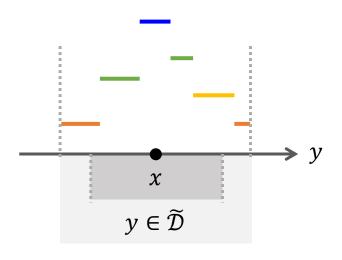
Expected error:

$$\min_{\mathcal{M}: p_i, l_i, r_i} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Find  $\mathcal{M}$  to minimize the error at x

## Optimal Piecewise-based Mechanism

■ **Most generalized version:** *m*-piecewise distribution



$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{ (LDP constraint)}$$

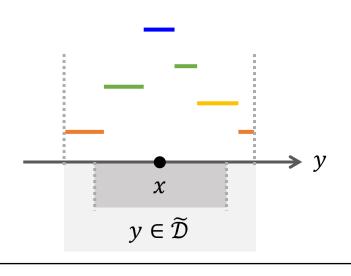
Expected error:

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Find  $\mathcal{M}$  to minimize the worst-case error

## Optimal Piecewise-based Mechanism

**Most generalized version:** *m*-piecewise distribution



$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{1,\varepsilon} & \text{if } y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}] \\ p_{2,\varepsilon} & \text{if } y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}] \\ & \dots \\ p_{m,\varepsilon} & \text{if } y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}] \end{cases}$$

if 
$$y \in [l_{1,x,\varepsilon}, r_{1,x,\varepsilon}]$$
  
if  $y \in [l_{2,x,\varepsilon}, r_{2,x,\varepsilon}]$   
...  
if  $y \in [l_{m,x,\varepsilon}, r_{m,x,\varepsilon}]$ 

$$\frac{p_{i,\varepsilon}}{p_{j,\varepsilon}} \leq e^{\varepsilon} \text{ (LDP constraint)}$$

Solved  $\mathcal{M}$  is the optimal piecewise-based mechanism

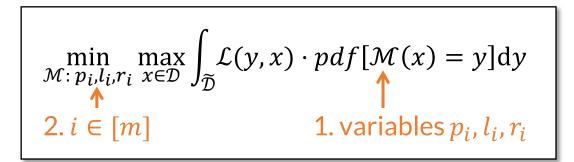
Mathematically  $\equiv$  to find the **optimal** piecewise distribution under the LDP constraint

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

Find  $\mathcal{M}$  to minimize the worst-case error

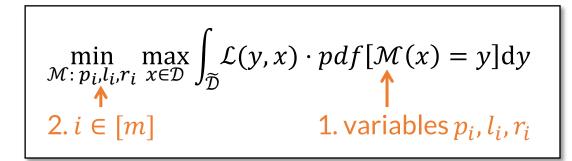
## Challenges & Proofs

- Challenges
  - 1. min-max problem & multiple variables
  - 2. optimal results only for a specific m



## Challenges & Proofs

- Challenges
  - 1. min-max problem & multiple variables
  - 2. optimal results only for a specific m



Inner max has a closed form Worst-case from  $x = \text{endpoints of } \mathcal{D}$ 

Reduced to:

minimization problem

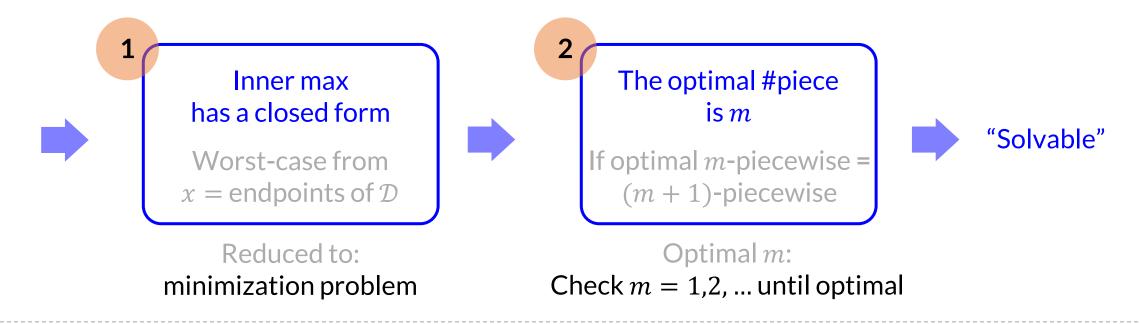
## Challenges & Proofs

- Challenges
  - 1. min-max problem & multiple variables
  - 2. optimal results only for a specific m

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy$$

$$\uparrow$$

$$2. i \in [m]$$
1. variables  $p_i, l_i, r_i$ 



## NOT Manually "Solvable" When $m \geq 4$

• When  $m \ge 4$ : Too many variables & non-linear

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

## NOT Manually "Solvable" When $m \geq 4$

- When  $m \ge 4$ : Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
  - limitation: needs given ε

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

- limitation: cannot provide closed-form  $\mathcal{M}$ :  $p_i$ ,  $l_i$ ,  $r_i$  (only optimal values)
- can be used to analyze optimality

## NOT Manually "Solvable" When $m \geq 4$

- When  $m \ge 4$ : Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
  - limitation: needs given  $\varepsilon$
  - limitation: cannot provide closed-form  $\mathcal{M}$ :  $p_i$ ,  $l_i$ ,  $r_i$
  - can be used to analyze optimality

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

Monte Carlo testing: Optimality under  $10^4$  random  $\varepsilon$ 

**Hypothesis.** For any domain  $\mathcal{D} \to \mathcal{D}$ , under error metrics  $\mathcal{L}(y, x) \coloneqq |y - x|$  and  $\mathcal{L}(y, x) \coloneqq (y - x)^2$ , the optimal piecewise-based mechanism falls into 3-piecewise mechanism.

## Manually (Analytically) Solvable When m=3

- When  $m \geq 4$ : Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
  - limitation: needs given  $\varepsilon$
  - limitation: cannot provide closed-form  $\mathcal{M}$ :  $p_i$ ,  $l_i$ ,  $r_i$
  - can be used to analyze optimality

$$\max_{x \in \{a,b\}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) \, \mathrm{d}y$$

Monte Carlo testing: Optimality under  $10^4$  random  $\varepsilon$ 

**Hypothesis.** For any domain  $\mathcal{D} \to \mathcal{D}$ , under error metrics  $\mathcal{L}(y, x) \coloneqq |y - x|$  and  $\mathcal{L}(y, x) \coloneqq (y - x)^2$ , the optimal piecewise-based mechanism falls into 3-piecewise mechanism.

different from existing instantiations  $\leftarrow$  (closed-form  $\mathcal{M}$  can be manually solved)

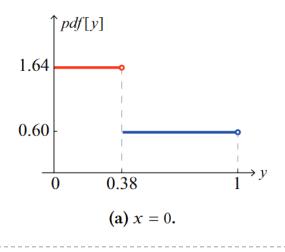
#### Closed Form Mechanism

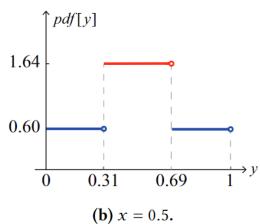
Optimal  $\mathcal{M}: [0,1) \to [0,1)$  under  $\mathcal{L} := |y-x|$ 

$$pdf[\mathcal{M}(x) = y] = \begin{cases} \exp\left(\frac{\varepsilon}{2}\right) & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}) \\ \exp\left(-\frac{\varepsilon}{2}\right) & \text{if } y \in [0,1) \setminus [l_{x,\varepsilon}, r_{x,\varepsilon}) \end{cases} \qquad [l_{x,\varepsilon}, r_{x,\varepsilon}) = \begin{cases} [0,2C) & \text{if } x \in [0,C) \\ x + [-C,C) & \text{if } x \in [C,1-C) \\ [1-2C,1) & \text{otherwise} \end{cases} \qquad C = \frac{\exp(\varepsilon/2) - 1}{2(\exp(\varepsilon) - 1)}$$

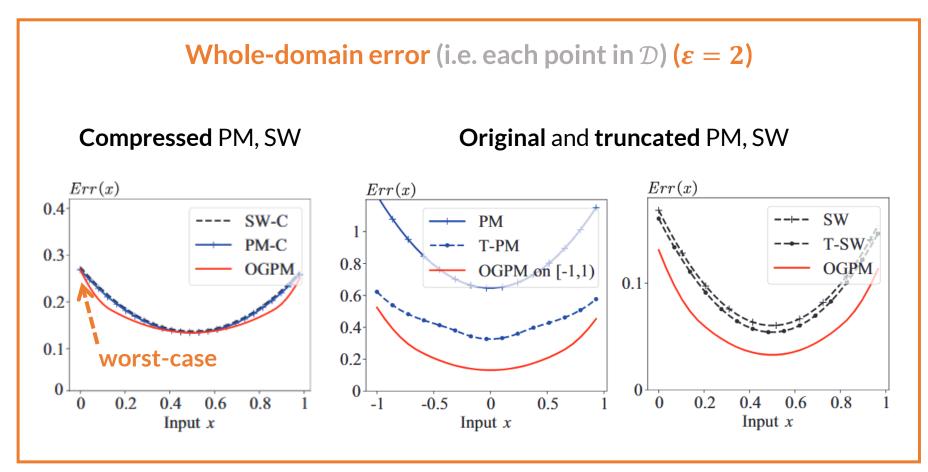
$$[l_{x,\varepsilon}, r_{x,\varepsilon}) = \begin{cases} [0,2C) & \text{if } x \in [0,C) \\ x + [-C,C) & \text{if } x \in [C,1-C) \\ [1-2C,1) & \text{otherwise} \end{cases} \qquad C = \frac{\exp(\varepsilon/2) - 1}{2(\exp(\varepsilon) - 1)}$$

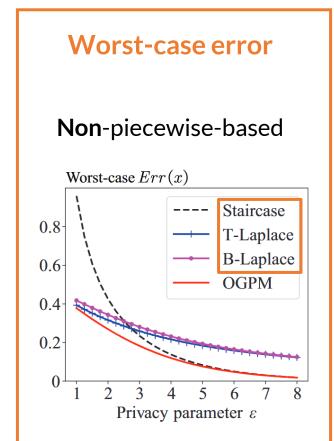
When  $\varepsilon = 1$ :





# Comparison of Expected Errors

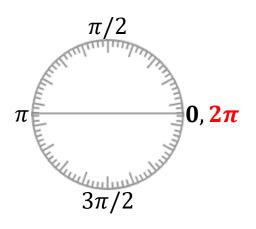




Lowest error

# Circular Domain

• Different meaning of distance, e.g. distance $(0, 2\pi) = 0$ 

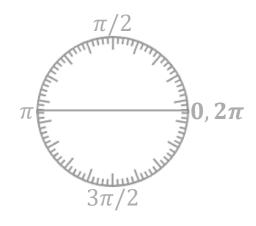


$$\mathcal{L} \to \mathcal{L}_{mod}$$

$$\mathcal{L}_{\text{mod}}(y, x) \coloneqq \min(\mathcal{L}(y, x), \mathcal{L}(y, 2\pi - x))$$

# Circular Domain

• Different meaning of distance, e.g. distance  $(0, 2\pi) = 0$ 



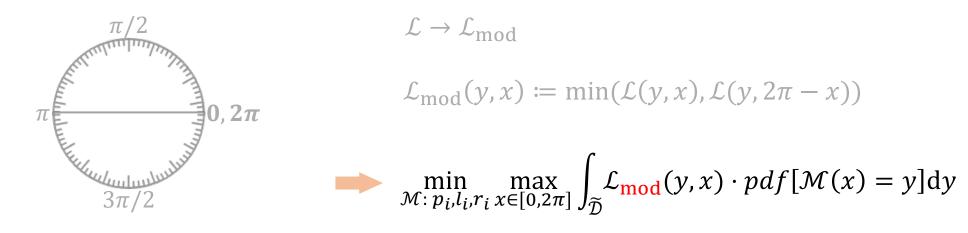
$$\mathcal{L} \to \mathcal{L}_{mod}$$

$$\mathcal{L}_{\text{mod}}(y, x) \coloneqq \min(\mathcal{L}(y, x), \mathcal{L}(y, 2\pi - x))$$

$$\min_{\mathcal{M}: p_i, l_i, r_i} \max_{x \in [0, 2\pi]} \int_{\widetilde{\mathcal{D}}} \mathcal{L}_{\mathbf{mod}}(y, x) \cdot p df[\mathcal{M}(x) = y] dy$$

# Circular Domain

• Different meaning of distance, e.g. distance  $(0, 2\pi) = 0$ 



Linking to problems in the classical domain

$$\frac{\text{min-max}}{\text{under } \mathcal{L}_{\text{mod}}} = \frac{\text{min under}}{\mathcal{L} \text{ at } \pi} = \frac{\text{min under}}{\mathcal{L}_{\text{mod}} \text{ at } x} = \frac{\text{min under}}{\mathcal{L} \text{ at } \pi} + \text{Transform}$$

$$p_i \qquad \qquad l_{i,x}^{\text{mod}}, r_{i,x}^{\text{mod}}$$

## Closed Form Mechanism

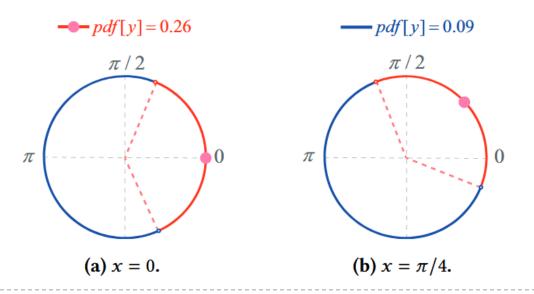
Optimal  $\mathcal{M}: [0,2\pi) \to [0,2\pi)$  under  $\mathcal{L}_{mod}$ 

$$pdf[\mathcal{M}(x) = y] = \begin{cases} \frac{1}{2\pi} \exp\left(\frac{\varepsilon}{2}\right) & \text{if } y \in [l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}}) \\ \frac{1}{2\pi} \exp\left(-\frac{\varepsilon}{2}\right) & \text{if } y \in [0,2\pi) \setminus [l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}}) \end{cases} \qquad \begin{bmatrix} l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}} \right) = [x - C, x + C) \mod 2\pi$$

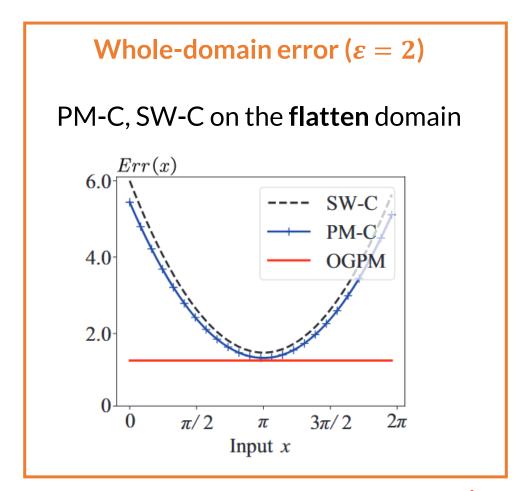
$$\left[l_{x,\varepsilon}^{\text{mod}}, r_{x,\varepsilon}^{\text{mod}}\right] = \left[x - C, x + C\right) \mod 2\pi$$

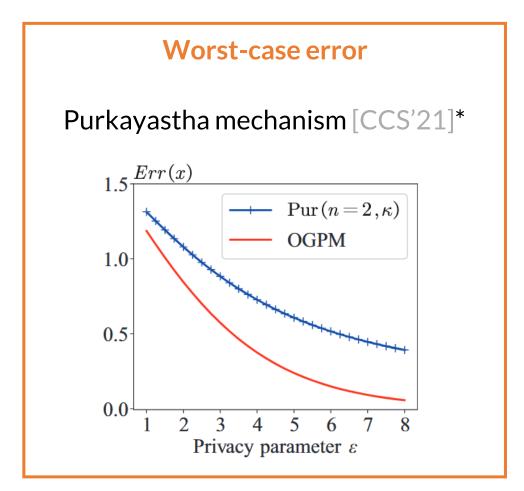
$$C = \pi \frac{\exp(\varepsilon/2) - 1}{\exp(\varepsilon) - 1}$$

When  $\varepsilon = 1$ :



# Comparison of Expected Errors

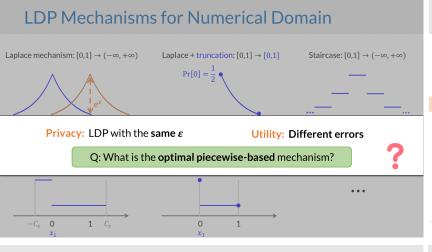


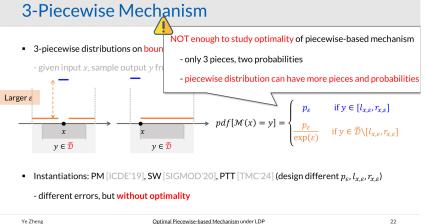


Lowest error

<sup>\*</sup> Differential Privacy for Directional Data, CCS'21

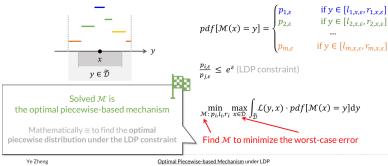
# Optimal Piecewise-based Mechanism for Collecting Bounded Numerical Data under LDP



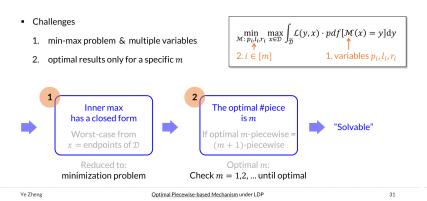


#### **Optimal Piecewise-based Mechanism**

Most generalized version: m-piecewise distribution



#### **Challenges & Proofs**



#### Manually (Analytically) Solvable When m = 3

- lacksquare When  $m \geq 4$ : Too many variables & non-linear
- Efficiently solved by off-the-shelf solvers, e.g. Gurobi
  - limitation: needs given  $\varepsilon$

Ye Zheng

- limitation: cannot provide closed-form  $\mathcal{M}$ :  $p_i$ ,  $l_i$ ,  $r_i$
- can be used to analyze optimality

Monte Carlo testing: Optimality under  $10^4$  random  $\varepsilon$ 

 $\max_{x \in \{a,b\}} \left| p_i \right| \mathcal{L}(y,x) \, \mathrm{d}y$ 

**Hypothesis.** For any domain  $\mathcal{D} \to \mathcal{D}$ , under error metrics  $\mathcal{L}(y,x) \coloneqq |y-x|$  and  $\mathcal{L}(y,x) \coloneqq |y-x|$ , the optimal piecewise-based mechanism falls into 3-piecewise mechanism.

different from existing instantiations ←
(closed-form M can be manually solved)

Optimal Piecewise-based Mechanism under LDP

#### Circular Domain

• Different meaning of distance, e.g. distance $(0, 2\pi) = 0$ 



• Linking to problems in the classical domain



Ye Zheng Optimal Piecewise-based Mechanism under LDP 40









# **Optimality** of LDP Mechanisms

- Optimal error (utility) under privacy level  $\varepsilon$ 
  - many mechanisms are optimal in **order-of-magnitude**, e.g.  $\Omega(\frac{1}{\sqrt{n}})$  for the counting query\*
  - the staircase mechanism is optimal for **domain**  $[0,1] \rightarrow (-\infty, +\infty)^{\dagger}$
  - the geometric mechanism is universally optimal if any **post-processing** is allowed, e.g. truncation<sup>††</sup>

<sup>\*</sup> The Complexity of Differential Privacy, book section of "Tutorials on the Foundations of Cryptography", 2017

<sup>&</sup>lt;sup>†</sup> The Staircase Mechanism in Differential Privacy, journal version of ISIT'14

<sup>††</sup> Universally Utility-maximizing Privacy Mechanisms, STOC'09

# **Optimality** of LDP Mechanisms

- Optimal error (utility) under privacy level  $\varepsilon$ 
  - many mechanisms are optimal in **order-of-magnitude**, e.g.  $\Omega(\frac{1}{\sqrt{n}})$  for the counting query\*
  - the staircase mechanism is optimal for domain  $[0,1] \rightarrow (-\infty, +\infty)^{\dagger}$
  - the geometric mechanism is universally optimal if any **post-processing** is allowed, e.g. truncation<sup>††</sup>
- Specify the utility model (conditions for optimality)

1

**Error** metric

Err(truth, rand) $Err \text{ or } \Omega(Err)$  2

Data domain & type of mechanisms

Discrete / cont.  $\mathcal{D} \to \widetilde{\mathcal{D}}$ Laplace-shape / piecewise Post-processing

Laplace + truncation:  $[0,1] \rightarrow [0,1]$   $Pr[0] = \frac{1}{2}$ 

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy = \max_{x \in \mathcal{D}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) dy \qquad (m\text{-piecewise distribution})$$

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy = \max_{x \in \mathcal{D}} \sum_{i=1}^{m} p_i \int_{l_i}^{r_i} \mathcal{L}(y, x) dy \qquad (m\text{-piecewise distribution})$$

convex function w.r.t x

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}}^{\mathcal{L}} \mathcal{L}(y, x) \cdot p df [\mathcal{M}(x) = y] dy = \max_{x \in \mathcal{D}} \sum_{i=1}^{m} p_{i} \int_{l_{i}}^{r_{i}} \mathcal{L}(y, x) dy \qquad (m\text{-piecewise distribution})$$

$$= \max_{x \in \{a, b\}} \sum_{i=1}^{m} p_{i} \int_{l_{i}}^{r_{i}} \mathcal{L}(y, x) dy \qquad (\text{maximum principle})$$

Worst-case error is achieved at endpoints



• Optimal #piece is m if optimal m-piecewise = (m+1)-piecewise

Error from an arbitrary piece  $(\geq 0 \text{ variable})$ 

if: 
$$\min_{e_1, e_2, e_3} e_1 + e_2 + e_3 = \min_{e_1, e_2, e_3, e_4} e_1 + e_2 + e_3 + e_4$$

i.e. the error can't be lowered by arbitrary  $\geq 0$  variable

Worst-case error is achieved at endpoints

$$\max_{x \in \mathcal{D}} \int_{\widetilde{\mathcal{D}}}^{\mathcal{L}(y,x)} \cdot pdf[\mathcal{M}(x)] = \underbrace{\int_{-\infty}^{\infty} \mathcal{L}(y,x) \cdot pdf[\mathcal{M}(x)]}_{\text{After merging redundant pieces}}$$

• Optimal #piece is m if optimal m-piecewise = (m+1)-piecewise

Error from an arbitrary piece ∠ (≥ 0 variable)

if: 
$$\min_{e_1, e_2, e_3} e_1 + e_2 + e_3 = \min_{e_1, e_2, e_3, e_4} e_1 + e_2 + e_3 + e_4$$

i.e. the error can't be lowered by arbitrary  $\geq 0$  variable

then: 
$$= \min_{e_1, e_2, e_3, e_4, e_5} e_1 + e_2 + e_3 + e_4 + e_5$$

otherwise,  $e_4 \leftarrow e_4 + e_5$  can further lower the error