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Abstract

Local Differential Privacy (LDP) is a privacy model that enables users to perturb their data locally
before sharing it with untrusted data collectors for analysis. This privacy model provides provable
privacy guarantees for each individual user. Owing to these guarantees, it has been widely deployed
by major technology companies, inducing Apple, Google, and Microsoft, to protect user privacy while
still enabling the collection of data for analytics and machine learning tasks. However, a fundamental
challenge of LDP is the trade-off between privacy and data utility: stronger privacy guarantees for
users typically result in lower data utility for data collectors. Addressing this challenge, a central
direction of theoretical LDP research is to design mechanisms that provide better data utility under
the same privacy guarantee. This dissertation focuses on the central direction, aiming to advance
both the design of LDP mechanisms and the analysis of data utility under LDP.

This dissertation makes four main contributions: (i) It introduces correlated perturbation of multiple
attributes to improve data utility under LDP, generalizing existing independent-perturbation
mechanisms; (ii) it establishes the optimality of piecewise-based mechanisms, a state-of-the-art
category of LDP mechanisms for collecting bounded numerical data; (iii) building on piecewise-based
mechanisms, it proposes two mechanisms for collecting individual trajectory data, which achieve
higher efficiency and data utility by operating in continuous space instead of previously studied
discrete space; (iv) it provides a quantification framework for theoretically analyzing data utility of
classifiers under LDP-perturbed inputs, making a first step towards connecting LDP mechanisms

with robustness.

iii



Acknowledgments

This is the acknowledgements text

v



To the three cold, sober years I lived in Rochester,

whose quiet shaped me and whose memory I shall always carry.



Contents

1 Introduction
1.1 Correlated Perturbation for LDP . . . . . . ... .. ... ... L
1.2 Optimal Piecewise-based Mechanism . . . . . . . .. .. .. ... ... ........
1.3 Trajectory Collection in Continuous Space under LDP . . . . . ... ... ... ...
1.4 Quantification of Classifier Utility under LDP . . . . . . . ... ... ... ... ...

1.5 Dissertation Organization . . . . . . . . . . . ...

2 Background
2.1 And Now, Figures . . . . . . . . . . e

2.2 Using Tables . . . . . . . . e
3 JRR
4 OGPM
5 TraCS
6 QCU

Appendices

vi

10

10

11

16



CONTENTS vii

A Proofs 15
A1 First Appendix Section . . . . . . . . . . L 15
A.1.1 First Appendix Subsection . . . . . . . . ... 15

B Complimentary Materials 16
B.1 First Appendix Section . . . . . . . . . . L 16

B.1.1 First Appendix Subsection . . . . . . . ... ... 16



List of Figures

1.1

1.2

1.3

14

1.5

21

LDP system model. The dashed red line indicates the trust boundary. Each user
locally perturbs their true data x; using an LDP mechanism M before sending it to
the untrusted data collector. The data collector has access only to the perturbed

data Z; = M(e, x;), which it uses to perform statistical analysis. . . . .. ... ...
Privacy-utility curves. . . . . . ..o Lo
Correlated perturbation. . . . . . . . . . . . ...

Hlustration of piecewise distributions. Existing piecewise-based mechanisms [17,20,31]
are special cases of 3-piece distributions (left). In contrast, a general piecewise
distribution can have an arbitrary number of pieces and locations (right), which may

improve data utility as existing evidence [10,30] suggests. . . . . . . ... ... ...

From empirical to theoretical utility analysis. Chapter 6 analytically quantifies
classifier utility under LDP mechanisms by linking the concentration analysis of LDP

mechanisms with the robustness analysis of classifiers. . . . . ... ... ... ....

A picture of the GCCIS atrium, with mascot Ritchie. Figure captions are often at

the bottom, and table captions at thetop . . . . . . . ... ... ... ... .....

viil



List of Tables

1.1 Comparison of typical privacy-enhancing techniques. . . . . . . . ... ... ... ..

2.1 THIS IS A TABLE CAPTION. NOTE THAT THE THIRD ROW CONTAINS A VALUE THAT
SPANS TWO COLUMNS. SMALL CAPS (SC) IS A FUN FONT, BUT ISN'T ALWAYS USED
FOR TABLE CAPTIONS . .« . . v vt vt vttt e it e e e e e e e e

X



Chapter 1
Introduction

Local differential privacy (LDP) mechanisms protect individual users’ data privacy against untrusted
data collectors by allowing each user to locally perturb their data before sharing it [6,8]. Though
the data collector receives only perturbed data, they can still learn valuable statistics while being
unable to infer much about any individual user’s true data, with privacy guarantees quantified
by the privacy parameter €. Due to these provable privacy guarantees, LDP mechanisms have
been widely adopted by major technology companies, including Apple’s operating systems [26],
Google Chrome [9], and Microsoft Office [28] for collecting user statistics on-device. Furthermore,
LDP is a key privacy-enhancing component in federated learning, a decentralized machine learning
paradigm where users collaboratively train a global model without sharing sensitive data with a

central server [1,14].

Figure 1.1 illustrates the LDP system model, in which an untrusted data collector may attempt to

infer users’ true (sensitive) data. The LDP mechanism M acts as a guard at the trust boundary,

Sensitive data ~ Randomization Data analysis

|
S 5 — M) ——

| -
—> Mg, r.) s
: |

1 —> Me,z,) ——>
I

=

Figure 1.1: LDP system model. The dashed red line indicates the trust boundary. Each user locally perturbs
their true data z; using an LDP mechanism M before sending it to the untrusted data collector. The data

collector has access only to the perturbed data &; = M(e, x;), which it uses to perform statistical analysis.
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Table 1.1: Comparison of typical privacy-enhancing techniques.

Threat Model ‘ Technique Privacy Guarantee Complexity Data Utility
Trusted Colloctor k-anonymity [29] ‘Syntactic Me.dium High
Central DP [7] Semantic (e-DP) Simple  e-dependent
HEP [27] Semantic (IND-CPA) Complex High
Untrusted Collector®| MPC* [36] Semantic (Real/Ideal) Complex High
LDP [6] Semantic (e-LDP) Simple  e-dependent

& For correct service functionality, an untrusted data collector is often modeled as honest-but-curious.
> Homomorphic Encryption (HE) typically requires that the service functionality be expressible using operations
supported by the encryption scheme.

¢ Secure Multi-Party Computation (MPC) usually assumes that only a subset of parties may be malicious.

preserving privacy by injecting unreversible randomness (quantified by ) into each user’s true data

x; before it leaves their device.

Advantages over other privacy-enhancing techniques. Orthogonal to LDP, various privacy-
enhancing techniques (PETSs) have been proposed to protect user data privacy in data collection
and analysis. They are designed under different threat models and offer different senses of privacy

guarantee. Table 1.1 summarizes and compares typical PETs.

k-anonymity [29] and central DP [7] assume a trusted data collector with direct access to users’
true data, and place the responsibility for safeguarding individual privacy against external inference
attacks on the collector. Among them, (i) k-anonymity is a syntactic privacy model that protects
the linkage between users’ identities and their data by masking quasi-identifiers in the dataset,
rather than directly protecting the sensitive data themselves. Designing an effective masking scheme
is often difficult for high-dimensional data, and such syntactic models have been shown to be
vulnerable to various attacks [13,16,22]. (ii) Central DP, in contrast, provides a semantic privacy
guarantee by adding randomness to aggregated statistics before releasing them, making it difficult
to infer any individual user’s data from the published statistics. A subtle but important issue in
central DP is the definition of “neighboring datasets” (e.g. record removal vs. record replacement),

which can lead to different required noise levels under the same privacy parameter ¢ [23,24, 25].

Homomorphic Encryption (HE) [27] and Secure Multi-Party Computation (MPC) [36] are cryp-
tographic techniques that can also protect user data privacy when the data collector is untrusted.
(i) HE enables certain function evaluations to be performed directly on encrypted data without
decryption. Its privacy guarantee relies on indistinguishability under chosen-plaintext attack (IND-

CPA), which ensures that an adversary cannot distinguish the encryptions of any two chosen
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plaintexts. (ii) MPC allows multiple parties to jointly compute a function over their private inputs
without revealing those inputs to one another. Its privacy guarantee is formalized via the real/ideal
simulation paradigm, which requires that an adversary’s (e.g. a malicious party’s) view during
the protocol execution can be simulated using only its own input and output, implying that no
additional information is leaked to the adversary. Both HE and MPC typically require sophisticated

protocol design and incur substantial computational and communication overhead.

Compared with these PETSs, LDP offers several advantages. It provides semantic privacy guarantees
for individual users’ data, quantified by the clean e-LDP notion, agnostic to the data collector and

has low complexity suitable for resource-constrained devices.

Despite these advantages, LDP mechanisms are fundamentally constrained by a privacy-utility trade-
off: achieving stronger privacy guarantees (i.e. smaller ) requires injecting more randomness into
users’ data, which in turn degrades the utility of the collected data for downstream statistical analysis.

Figure 1.2 illustrates this trade-off by showing the worst-case ex-
Worst-case expected error

pected error of M (e, ;) for four LDP mechanisms on a numerical

data domain x; € [0,1]. As ¢ increases, the worst-case expected 08 —— Laplace

. e e . : ---- Stai
error decreases for all mechanisms, indicating improved data util- Staircase
. . e . 0.6 T-Laplace
ity. However, for a fixed privacy parameter €, the utility achieved OGPM

by different mechanisms can vary significantly. Some mechanisms,

such as OGPM, achieve lower expected error across most ¢ val-

ues than others, demonstrating a better privacy-utility trade-off.

1 2 3 4 5 6 7 8
Privacy parameter ¢

A central direction of theoretical LDP research is therefore to
design mechanisms that optimize this trade-off, as they directly
determine the building blocks of practical LDP systems deployed Figure 1.2: Privacy-utility curves.
in real-world applications. Beyond this, it is also important to
quantify the utility of complex data analysis tasks under LDP, such as classifier performance, which
cannot be inferred solely from the expected error of the underlying LDP mechanisms. Understanding
these utility implications is crucial for guiding the selection and configuration of LDP mechanisms

in practice.

To summarize, there are two fundamental challenges in advancing current LDP research:

e Designing LDP mechanisms with optimized privacy-utility trade-offs.

e Quantifying the utility of complex data analysis tasks under LDP.

Contributions of this dissertation. Aiming to address these fundamental challenges, this

dissertation makes the following contributions:
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e Chapter 3 introduces correlated perturbation into LDP mechanisms for multiple users’ data,
which generalizes existing LDP mechanisms that perturb each user’s data independently and

achieves improved privacy-utility trade-offs.

e Chapter 4 establishes the optimality of piecewise-based mechanisms, state-of-the-art category

of LDP mechanisms for collecting bounded numerical data.

e Chapter 5 proposes two mechanisms for collecting individual trajectory data, which achieve
higher efficiency and data utility by operating in continuous space instead of previously studied

discrete space.

e Chapter 6 provides a quantification framework for theoretically analyzing data utility of clas-
sifiers under LDP-perturbed inputs, making a first step towards connecting LDP mechanisms

with robustness.

The remainder of this chapter briefly overviews the research questions and key ideas underlying each

contribution. Implementations and evaluations are available at https://github.com/ZhengYeah/.

1.1 Correlated Perturbation for LDP

The most classical and widely used application of LDP is frequency estimation, where the data
collector aims to estimate the number (or proportion) of users possessing a certain attribute or
data value. Randomized Response (RR) [35] is the first known and most classical LDP protocol for
frequency estimation on binary data (e.g. yes/no questions). In RR, each user perturbs their true
binary data independently by flipping it with a probability determined by the privacy parameter €.
Due to its simplicity and effectiveness, RR has been widely adopted as a building block in many
LDP mechanisms for diverse data types and analysis tasks [2,4,33,34]. A common feature of these
RR-based mechanisms, and of LDP mechanisms more broadly, is that each user’s data is perturbed
independently, resulting in a large amount of total randomness. This raises a natural research
question: Can the data utility of RR be improved by introducing correlations among the random

perturbations performed by different users?

Chapter 3 investigates correlated random perturbations for fre-

quency estimation to improve data utility without weakening ; r, —> M(e,x;)
LDP guarantees. The key insight is that the total randomness Corrclation$
injected into users’ data can be reduced by partitioning data con- _ M (8, )

tributors into disjoint pairs and introducing carefully designed
) ) ) . ) Figure 1.3: Correlated perturbation.
correlations into each pair’s random perturbations, as illustrated
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in Figure 1.3. Crucially, no additional information is revealed to

the data collector as long as the group membership remains hidden. A novel Joint Randomized
Response (JRR) mechanism is proposed based on this idea. With appropriately chosen parameters,
JRR achieves substantially higher data utility in the vast majority of cases, while providing the

same level of LDP protection as classical RR.

Specifically, this chapter makes the following contributions:

e (Correlated perturbation) It makes the first attempt in the LDP literature to introduce
correlated perturbations into LDP mechanisms, thereby improving the data utility of frequency

estimation.

e (The JRR mechanism) It proposes a general JRR mechanism that provides the same level
of LDP protection as classical RR, while substantially improving data utility in most cases,

particularly when the number of data contributors is large.

e (Practical instantiations) It presents a practical instantiation of JRR that leverages either a
non-colluding auxiliary server or an MPC protocol to conceal group membership from the

data collector.

1.2 Optimal Piecewise-based Mechanism

Numerical data with bounded domains is a fundamental data type in personal devices and sensor
networks. These bounded domains can be categorized into two types: linear ranges, such as
sensor readings in [0, 1)*, referred to as the classical domain; and cyclic ranges, such as angular
measurements in [0, 27), referred to as the circular domain. The Laplace mechanism [7] is the most
classical LDP mechanism for numerical data privacy: it adds random noise drawn from a Laplace
distribution determined by ¢ to the sensitive data. However, the unbounded support of the Laplace

noise makes it unsuitable for bounded domains.

State-of-the-art LDP mechanisms for numerical data on bounded domains are piecewise-based
mechanisms [17,20,31]. These mechanisms randomize sensitive data to values drawn from carefully
designed piecewise probability distributions. Existing instantiations use different pieces and proba-
bilities, but are all designed for classical (linear) domains. Their applicability to other bounded
domains, such as the circular domains of angular sensors that frequently arise in personal devices,

remains unexplored.

*To ease interval operations (e.g. union and intersection), this dissertation uses left-closed right-open intervals.

They are equivalent to closed intervals in implementation and practical applications.
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Figure 1.4: Illustration of piecewise distributions. Existing piecewise-based mechanisms [17,20,31] are special
cases of 3-piece distributions (left). In contrast, a general piecewise distribution can have an arbitrary number

of pieces and locations (right), which may improve data utility as existing evidence [10,30] suggests.

The optimality of piecewise-based mechanisms remains a challenging open problem. Existing
instantiations can be viewed as heuristic forms of the 3-piece mechanism (TPM). As a special case
with exactly 3 pieces and pre-defined functional forms, TPM is too restrictive to fully characterize
the optimality of piecewise-based mechanisms. Evidence from the staircase Laplace mechanism [10]
for unbounded numerical data shows that the asymptotically optimal mechanism has a staircase
(multi-piece) structure. For categorical data, the Staircase Randomized Response mechanism
(SRR) [30] improves data utility in location collection compared to classical RR. These and other
results suggest that increasing the diversity of probabilities over the data domain, i.e., using more
pieces, can improve data utility. Motivated by this, a fundamental question for piecewise-based
mechanisms is: What is the optimal instantiation of a piecewise-based mechanism? In designing
such mechanisms, the number of pieces, as well as their probabilities and sizes, can be arbitrary.
Finding the optimal instantiation within this large design space is challenging, as it requires jointly

optimizing the number of pieces and the associated probabilities and sizes.

Chapter 4 studies the optimality of piecewise-based mechanisms in their most general form. It
extends TPM to a generalized piecewise-based mechanism (GPM) with m pieces, where each piece
has no predefined functional form. Within this GPM framework, it formulates an optimization
problem that minimizes the distance between the sensitive and randomized data. By combining
numerical solutions of this optimization problem with analytical proofs, it derives a closed-form
characterization of the optimal GPM for classical domains. For circular domains, where the distance
metric is periodic (e.g. the distance between 0 and 27 is zero), it explicitly incorporates this property
into the mechanism design and reduce the search for the optimal mechanism to related problems on

classical domains.

Specifically, this chapter makes the following contributions:

e (Solving framework) It is the first work to study the closed-form optimal piecewise-based

mechanism in its most general form. A framework is proposed that combines analytical proofs
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with off-the-shelf optimization solvers to derive the closed-form optimal mechanism, providing
a practical foundation for achieving optimal data utility under LDP for bounded numerical
data.

e (Closed-form instantiations) It derives closed-form optimal mechanisms for both the classical
and circular domains. These mechanisms can be directly used as building blocks in applications

such as sensor networks and federated learning.

1.3 Trajectory Collection in Continuous Space under LDP

Trajectory data from users—sequences of locations that describe movement over time—are a
fundamental resource for activity analysis and location-based services, such as activity classification
and routine detection. Existing LDP methods for trajectory collection are primarily designed for
discrete spaces. They rely on discrete-domain mechanisms, such as the Exponential mechanism [21],
to perturb trajectory data. Because discrete LDP mechanisms are explicitly defined with respect to
the size of the location space, these methods either partition the continuous space into grids [30] or

assume that the location space is a finite set of labeled locations (points of interest) [5,38].

Limitations of discrete-domain mechanisms. Relying on discrete spaces has three limitations:
(i) Their privacy guarantees are inherently tied to the chosen discrete set. For example, a discrete
location space with 10 points provides weaker protection than one with 100 points, since any inference
attack has at least a 10% chance of success in the former, regardless of the privacy parameter e. (ii)
Their efficacy and efficiency are often constrained by the size of the discrete set. As the set size
increases, the probability of selecting the true location decreases, while the widely used Exponential
mechanism incurs linear sampling complexity in the size of the location set for each perturbed
sample. (iii) Discrete methods are not directly applicable to inherently continuous location spaces,

such as flying and sailing trajectories or sensor trajectories from wearable devices.

Chapter 5 addresses these limitations by shifting the focus from discrete to continuous spaces for
trajectory collection under LDP. A continuous space models locations as real-valued coordinates, such
as GPS positions in [—180, 180] x [—90, 90], and therefore contains infinitely many candidate locations.
Collecting trajectory data directly in continuous spaces is natural for many applications and offers
three key advantages over first discretizing the space and then applying discrete methods: (i) The
privacy guarantee holds over the entire continuous space, independent of the chosen discretization.
(ii) The sampling mechanism operates directly on the continuous domain, so its efficacy and efficiency
are decoupled from the “number” of locations. (iii) Perturbed locations in the continuous space can

be post-processed (e.g. by rounding) to any discrete space contained within it, making the approach
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applicable to both continuous and discrete settings.

This chapter proposes two new LDP methods for trajectory collection in continuous spaces. The key
idea is to decompose the 2D continuous space into 1D subspaces and design mechanisms for each
subspace, building on piecewise-based mechanisms [17,31,39] for 1D bounded numerical domains.
Depending on the chosen decomposition of the continuous space, we obtain two methods, TraCS-D
and TraCS-C.

Specifically, this chapter makes the following contributions:

e This is the first work to provide trajectory collection methods for continuous spaces under pure
LDP. It introduces TraCS-D and TraCS-C, which employ novel location perturbation mecha-
nisms that exploit both directional and coordinate information of trajectories in continuous

spaces.

e TraCS is also applicable to discrete spaces. Compared with existing methods for discrete
spaces, TraCS achieves significantly lower computational complexity when generating perturbed

locations.

1.4 Quantification of Classifier Utility under LDP

Classifiers map input data to class labels and underpin a wide range of industrial applications,
including predictive modeling, data analysis, and image recognition [12,15,19]. When deployed as
services, classifiers require users to submit input data that often contain sensitive information, such
as medical records or financial attributes, thereby raising serious privacy concerns. While users
seek to benefit from classification services, they may be unwilling to disclose their sensitive data.
A common mitigation strategy is client-side data perturbation, such as adding noise to numerical
data or applying blurring and other obfuscation techniques to images before sending them to the
classifier. Data perturbation remains a lightweight and intuitive solution for privacy-preserving
classification [3,37,40]. Among these approaches, LDP mechanisms provide users with provable
privacy guarantees. However, such perturbations inevitably degrade the utility of the classifier,
leading to a fundamental research question: How can we quantify the utility of classifiers when their

inputs are perturbed by LDP mechanisms?

Utility of classifiers under LDP. For simple queries such as summation, utility can be quantified

TAnother category of LDP mechanisms for bounded numerical domains is truncated mechanisms, e.g. the truncated
Laplace mechanism [11,18]. While they can be incorporated into TraCS, they are more complex and less effective

than piecewise-based mechanisms.
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Figure 1.5: From empirical to theoretical utility analysis. Chapter 6 analytically quantifies classifier utility
under LDP mechanisms by linking the concentration analysis of LDP mechanisms with the robustness analysis

of classifiers.

analytically via the mean squared error (MSE) of LDP mechanisms [31,32]. For classification tasks,
however, utility is typically measured by classification accuracy, which cannot be written analytically
in terms of MSE. A straightforward way to evaluate classifier utility under an LDP mechanism
with a given privacy parameter € is to repeatedly perturb the data and measure the proportion
of correctly classified instances, as illustrated in Figure 1.5. Although practical, this empirical
approach has significant limitations: it applies only to specific choices of € and particular perturbed
datasets; changing e requires time-consuming re-evaluation, and different random perturbations
lead to different results. Moreover, it does not reveal how utility depends on the privacy parameter,
making it unsuitable for systematic comparison of LDP mechanisms. In contrast, an analytical utility
quantification framework—analogous to MSE for summation queries—would provide principled
guidance for the design and deployment of classifiers under LDP, but such a framework is currently

lacking.

Quantifying the relationship between privacy and classifier utility presents significant analytical
challenges. These challenges stem from two aspects: (i) LDP mechanisms inherently introduce
perturbations across the entire data domain, potentially causing no utility for classifiers. (ii)
Classifiers are often complex or even black-box functions, making it difficult to analyze their

behavior under perturbations.

Chapter 6 develops a framework to theoretically quantify classifier utility under LDP mechanisms.
This framework addresses the above challenges via two key insights: (i) LDP mechanisms generate

perturbed data that, with high probability, concentrates within a bounded region around the original
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data, making extreme perturbations rare. (ii) Within this concentration region, utility analysis of
a classifier can be reformulated as a robustness analysis problem. Here, robustness characterizes
how reliably a classifier preserves its predictions under input perturbations. Established robustness
analysis techniques can determine the maximum permissible perturbation that leaves the classifier’s
output unchanged, thereby preserving utility. By combining the concentration analysis of LDP
mechanisms with the robustness analysis of classifiers, a theoretical characterization of data utility
can be obtained as a function of the privacy parameter e, formalized as: Given classifier h, LDP
mechanism M, and raw data x, with probability at least p(e,8), h preserves its correct classification
result under Mg (z).

Applications. The proposed utility quantification framework has direct applications in privacy-
preserving classification systems: (i) It enables a comparative analysis of different LDP mechanisms
for a given classifier by evaluating their probability guarantees p(e,6). An LDP mechanism that
provides a higher p(e, ) ensures better utility at the same privacy level. (ii) The framework
facilitates the selection of an appropriate privacy parameter € to meet specific utility requirements.
For example, given a utility threshold p*, the framework identifies the ¢ that satisfies p(e, ) > p*,

achieving a precise privacy-utility balance when using the classifier.

Specifically, this chapter makes the following contributions:

e (Quantification framework) It introduces the first analytical framework for quantifying classifier
utility under LDP mechanisms by linking the concentration analysis of LDP mechanisms with

the robustness analysis of classifiers, enabling principled utility evaluation.

e (Refinement techniques) It develops two refinement techniques that enhance utility quantifi-
cation. The first extends robustness from a scalar “robustness radius” to an axis-aligned
“robustness hyperrectangle”, enabling tighter robustness analysis. The second adapts the PAC
privacy notion by introducing a new privacy indicator and an extended Gaussian mechanism

that is applicable to any e.

1.5 Dissertation Organization

The remainder of this dissertation presents the necessary background on LDP in Chapter 2, followed
by four chapters that each address one of the research questions in detail. Each chapter begins
with a technical overview of the problem and key ideas, and then presents the proposed methods,
discussions, and experimental evaluations. Related work for each research question is reviewed at

the end of the corresponding chapter.
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