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 Social scientists: How many people engage in tax evasion? 

- ask one person if they had evaded tax

- the person answers YES or NO

YES

NO

NO

YES

NO

Collector

Frequency   =  # of YES 
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 People have privacy concerns on sensitive/embarrassing question

- i.e. don’t want to let the collector know

 A privacy mechanism ℳ satisfies LDP if

max
Pr ℳ 𝑥𝑥1 = 𝑦𝑦
Pr ℳ 𝑥𝑥2 = 𝑦𝑦

≤ 𝑒𝑒𝜀𝜀For any truth 𝑥𝑥1, 𝑥𝑥2,  
and randomized answer 𝑦𝑦: 

Distinguishability of 𝑥𝑥1 (YES) and 𝑥𝑥2 (NO) 
from 𝑦𝑦 (randomized answer)
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 People have privacy concerns on sensitive/embarrassing question

- i.e. don’t want to let the collector know

 A privacy mechanism ℳ satisfies LDP if

max
Pr ℳ 𝑥𝑥1 = 𝑦𝑦
Pr ℳ 𝑥𝑥2 = 𝑦𝑦

≤ 𝑒𝑒𝜀𝜀For any truth 𝑥𝑥1, 𝑥𝑥2,  
and randomized answer 𝑦𝑦: 

Distinguishability of 𝑥𝑥1 (YES) and 𝑥𝑥2 (NO) 
from 𝑦𝑦 (randomized answer)

- quantifiable hardness to distinguish 𝑥𝑥1 (YES) and 𝑥𝑥2 (NO) from the randomized answer 𝑦𝑦

- against inference from data collectors or adversaries 
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- i.e. don’t want to let the collector know

 Randomized Response:  Randomize the truth before answering the collector
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NO
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…

 People have privacy concerns on sensitive/embarrassing question
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- i.e. don’t want to let the collector know

 Randomized Response:  Randomize the truth before answering the collector

YES

NO

NO

YES

NO

Collector
RR
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RR

RR

RR

NO

NO

YES

YES

NO

RR 𝑥𝑥 = � 𝑥𝑥¬𝑥𝑥
w. p.  𝑝𝑝

 w. p.  1 − 𝑝𝑝

RR: [Warner, 1965] 
answer truth with probability 𝑝𝑝

…

Private

max
Pr 𝐑𝐑𝐑𝐑 𝑥𝑥1 = 𝑦𝑦
Pr 𝐑𝐑𝐑𝐑 𝑥𝑥2 = 𝑦𝑦

≤ 𝑒𝑒𝐥𝐥𝐥𝐥
𝒑𝒑

𝟏𝟏−𝒑𝒑



 People have privacy concerns on sensitive/embarrassing question
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- i.e. don’t want to let the collector know

 Randomized Response:  Randomize the truth before answering the collector

estimated frequency

YES

NO

NO

YES

NO

Collector
RR

RR

RR

RR

RR

NO

NO

YES

YES

NO

RR 𝑥𝑥 = � 𝑥𝑥¬𝑥𝑥
w. p.  𝑝𝑝

 w. p.  1 − 𝑝𝑝

RR: [Warner, 1965] 
answer truth with probability 𝑝𝑝

= 
# of YES − # ×𝑞𝑞

𝑝𝑝−𝑞𝑞

Unbiased:
 expectation = truth 

…

Private

max
Pr 𝐑𝐑𝐑𝐑 𝑥𝑥1 = 𝑦𝑦
Pr 𝐑𝐑𝐑𝐑 𝑥𝑥2 = 𝑦𝑦

≤ 𝑒𝑒𝐥𝐥𝐥𝐥
𝒑𝒑

𝟏𝟏−𝒑𝒑
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 Randomization reduces data utility

Var  = 
# of YES −  #  × 𝑞𝑞

𝑝𝑝 − 𝑞𝑞
Var[# of YES]

𝑝𝑝 − 𝑞𝑞 2 =
𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝 − 𝑞𝑞 2

- summation of  variance from 𝑛𝑛 independent randomization
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 Randomization reduces data utility

Var  = 
# of YES −  #  × 𝑞𝑞

𝑝𝑝 − 𝑞𝑞
Var[# of YES]

𝑝𝑝 − 𝑞𝑞 2 =
𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝 − 𝑞𝑞 2

- larger 𝑝𝑝 ∈ (0.5, 1]  →  lower variance  →  larger privacy parameter 𝜀𝜀

↑ data utility ↓ privacy

- summation of  variance from 𝑛𝑛 independent randomization
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 Randomization reduces data utility

Var  = 
# of YES −  #  × 𝑞𝑞

𝑝𝑝 − 𝑞𝑞
Var[# of YES]

𝑝𝑝 − 𝑞𝑞 2 =
𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝 − 𝑞𝑞 2

- larger 𝑝𝑝 ∈ (0.5, 1]  →  lower variance  →  larger privacy parameter 𝜀𝜀

↑ data utility ↓ privacy

- summation of  variance from 𝑛𝑛 independent randomization

 Q: Can we improve this privacy-utility tradeoff?
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 Randomization reduces data utility

Var  = 
# of YES −  #  × 𝑞𝑞

𝑝𝑝 − 𝑞𝑞
Var[# of YES]

𝑝𝑝 − 𝑞𝑞 2 =
𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝 − 𝑞𝑞 2

- larger 𝑝𝑝 ∈ (0.5, 1]  →  lower variance  →  larger privacy parameter 𝜀𝜀

↑ data utility ↓ privacy

- summation of  variance from 𝑛𝑛 independent randomization

-  yes,  by correlated (joint) randomization 

 Q: Can we improve this privacy-utility tradeoff?
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 JRR: Better data utility by joint randomization
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𝑇𝑇1 = 1 𝑇𝑇1 = 0

𝑇𝑇2 = 1 0.64 
(= 𝑝𝑝2)

0.16
(= 𝑝𝑝𝑝𝑝)

𝑇𝑇2 = 0 0.16
(= 𝑝𝑝𝑝𝑝)

0.04
(= 𝑞𝑞2)

Truthfulness
of 𝑥𝑥2

RR: Joint distribution

 Example:  2-person (𝑥𝑥1 = YES and 𝑥𝑥2 = YES) with 𝑝𝑝 = 0.8 (P 𝑇𝑇 = 1 = 0.8) 

Truthfulness
of 𝑥𝑥1

 JRR: Better data utility by joint randomization



This Paper:  Joint RR (JRR)

14Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response
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Truthfulness
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RR: Joint distribution

 Example:  2-person (𝑥𝑥1 = YES and 𝑥𝑥2 = YES) with 𝑝𝑝 = 0.8 (P 𝑇𝑇 = 1 = 0.8) 

Truthfulness
of 𝑥𝑥1

 JRR: Better data utility by joint randomization

Independent 𝑻𝑻𝟏𝟏 and 𝑻𝑻𝟐𝟐 (𝐏𝐏 𝑻𝑻𝟏𝟏 ∩ 𝑻𝑻𝟐𝟐 = 𝐏𝐏 𝑻𝑻𝟏𝟏 ⋅ 𝐏𝐏[𝑻𝑻𝟐𝟐])

Joint probability = Π of marginal probabilities
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 Example:  2-person (𝑥𝑥1 = YES and 𝑥𝑥2 = YES) with 𝑝𝑝 = 0.8 (P 𝑇𝑇 = 1 = 0.8) 

 JRR: Better data utility by joint randomization

Independent 𝑻𝑻𝟏𝟏 and 𝑻𝑻𝟐𝟐 (𝐏𝐏 𝑻𝑻𝟏𝟏 ∩ 𝑻𝑻𝟐𝟐 = 𝐏𝐏 𝑻𝑻𝟏𝟏 ⋅ 𝐏𝐏[𝑻𝑻𝟐𝟐])

Joint probability = Π of marginal probabilities

𝑇𝑇1 = 1 𝑇𝑇1 = 0

𝑇𝑇2 = 1 0.6
(= 𝑝𝑝2 + 𝜌𝜌𝜌𝜌𝜌𝜌)

0.2
(= 𝑝𝑝𝑝𝑝 − 𝜌𝜌𝜌𝜌𝜌𝜌)

𝑇𝑇2 = 0 0.2
(= 𝑝𝑝𝑝𝑝 − 𝜌𝜌𝜌𝜌𝜌𝜌)

0
(= 𝑞𝑞2 + 𝜌𝜌𝜌𝜌𝜌𝜌)

JRR: Joint distribution
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 Example:  2-person (𝑥𝑥1 = YES and 𝑥𝑥2 = YES) with 𝑝𝑝 = 0.8 (P 𝑇𝑇 = 1 = 0.8) 
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Independent 𝑻𝑻𝟏𝟏 and 𝑻𝑻𝟐𝟐 (𝐏𝐏 𝑻𝑻𝟏𝟏 ∩ 𝑻𝑻𝟐𝟐 = 𝐏𝐏 𝑻𝑻𝟏𝟏 ⋅ 𝐏𝐏[𝑻𝑻𝟐𝟐])

Joint probability = Π of marginal probabilities

𝑇𝑇1 = 1 𝑇𝑇1 = 0

𝑇𝑇2 = 1 0.6
(= 𝑝𝑝2 + 𝜌𝜌𝜌𝜌𝜌𝜌)

0.2
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𝑇𝑇2 = 0 0.2
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0
(= 𝑞𝑞2 + 𝜌𝜌𝜌𝜌𝜌𝜌)

JRR: Joint distribution

Same marginal prob for 
each person

P 𝑇𝑇1 = 1 = 0.8
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 Example:  2-person (𝑥𝑥1 = YES and 𝑥𝑥2 = YES) with 𝑝𝑝 = 0.8 (P 𝑇𝑇 = 1 = 0.8) 

 JRR: Better data utility by joint randomization

Independent 𝑻𝑻𝟏𝟏 and 𝑻𝑻𝟐𝟐 (𝐏𝐏 𝑻𝑻𝟏𝟏 ∩ 𝑻𝑻𝟐𝟐 = 𝐏𝐏 𝑻𝑻𝟏𝟏 ⋅ 𝐏𝐏[𝑻𝑻𝟐𝟐])

Joint probability = Π of marginal probabilities

𝑇𝑇1 = 1 𝑇𝑇1 = 0

𝑇𝑇2 = 1 0.6
(= 𝑝𝑝2 + 𝜌𝜌𝜌𝜌𝜌𝜌)

0.2
(= 𝑝𝑝𝑝𝑝 − 𝜌𝜌𝜌𝜌𝜌𝜌)

𝑇𝑇2 = 0 0.2
(= 𝑝𝑝𝑝𝑝 − 𝜌𝜌𝜌𝜌𝜌𝜌)

0
(= 𝑞𝑞2 + 𝜌𝜌𝜌𝜌𝜌𝜌)

JRR: Joint distribution

Same marginal prob for 
each person

P 𝑇𝑇1 = 1 = 0.8

NOT independent 𝑻𝑻𝟏𝟏 and 𝑻𝑻𝟐𝟐

𝐏𝐏 𝑻𝑻𝟏𝟏 = 𝟎𝟎 ∩ 𝑻𝑻𝟐𝟐 = 𝟎𝟎 = 𝟎𝟎 ≠ 𝐏𝐏 𝑻𝑻𝟏𝟏 = 𝟎𝟎 ⋅ 𝐏𝐏[𝑻𝑻𝟐𝟐 = 𝟎𝟎]=0.04

Joint probability ≠ Π of marginal probabilities
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 Same estimator as RR

E # of YES = �
𝑖𝑖=1

# 

P[𝑦𝑦𝑖𝑖 = YES] = 𝑛𝑛YES ⋅ 𝑝𝑝 + # 2 − 𝑛𝑛YES ⋅ 𝑞𝑞

Expectation Ground truth
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 Same estimator as RR

E # of YES = �
𝑖𝑖=1

# 

P[𝑦𝑦𝑖𝑖 = YES] = 𝑛𝑛YES ⋅ 𝑝𝑝 + # 2 − 𝑛𝑛YES ⋅ 𝑞𝑞

→  Unbiased estimator �𝑛𝑛YES = # of YES−2𝑞𝑞
𝑝𝑝−𝑞𝑞

 

Identical to RR



Var �𝑛𝑛YES =
Var # of YES

0.8 − 0.2 2

Utility: JRR’s Variance
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 Variance: (#      = 2, 𝑝𝑝 = 0.8)



Var �𝑛𝑛YES =
Var # of YES

0.8 − 0.2 2

Utility: JRR’s Variance
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 Variance: (#      = 2, 𝑝𝑝 = 0.8)

YES

YES

YES / NO
RR / JRR

YES / NO

Randomized



Var �𝑛𝑛YES =
Var # of YES

0.8 − 0.2 2

Utility: JRR’s Variance
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 Variance: (#      = 2, 𝑝𝑝 = 0.8)

# of YES 0 1 2

Probability 0 0.2 + 0.2 0.6

Var # of YES = 𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2 = 𝟎𝟎.𝟐𝟐𝟐𝟐

JRR

# of YES 0 1 2

Probability 0.04 0.16 + 0.16 0.64

Var # of YES = 𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2 = 𝟎𝟎.𝟑𝟑𝟑𝟑

RR

YES

YES

YES / NO
RR / JRR

YES / NO

 Distribution table: 

Randomized

= �
𝑋𝑋=0,1,2

𝑋𝑋 − 1.6 2 ⋅ Pr[𝑋𝑋] ≈ 𝟎𝟎.𝟏𝟏 + 𝟎𝟎.𝟏𝟏𝟏𝟏 + 𝟎𝟎.𝟏𝟏 = �
𝑋𝑋=0,1,2

𝑋𝑋 − 1.6 2 ⋅ Pr[𝑋𝑋] = 𝟎𝟎 + 𝟎𝟎.𝟏𝟏𝟏𝟏 + 𝟎𝟎.𝟏𝟏



Var �𝑛𝑛YES =
Var # of YES

0.8 − 0.2 2

Utility: JRR’s Variance
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 Variance: (#      = 2, 𝑝𝑝 = 0.8)

# of YES 0 1 2

Probability 0 0.2 + 0.2 0.6

Var # of YES = 𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2 = 𝟎𝟎.𝟐𝟐𝟐𝟐

JRR (near to 𝝁𝝁)

# of YES 0 1 2

Probability 0.04 0.16 + 0.16 0.64

Var # of YES = 𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2 = 𝟎𝟎.𝟑𝟑𝟑𝟑

RR

YES

YES

YES / NO
RR / JRR

YES / NO

 Distribution table: 

Randomized

= �
𝑋𝑋=0,1,2

𝑋𝑋 − 1.6 2 ⋅ Pr[𝑋𝑋] ≈ 𝟎𝟎.𝟏𝟏 + 𝟎𝟎.𝟏𝟏𝟏𝟏 + 𝟎𝟎.𝟏𝟏 = �
𝑋𝑋=0,1,2

𝑋𝑋 − 1.6 2 ⋅ Pr[𝑋𝑋] = 𝟎𝟎 + 𝟎𝟎.𝟏𝟏𝟏𝟏 + 𝟎𝟎.𝟏𝟏

Better utility
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 Correlated randomization with 2 persons 𝑥𝑥2𝑖𝑖−1 and 𝑥𝑥2𝑖𝑖

𝑇𝑇2𝑖𝑖−1 = 1 𝑇𝑇2𝑖𝑖−1 = 0

𝑇𝑇2𝑖𝑖 = 1 𝑝𝑝2 + 𝜌𝜌𝜌𝜌𝜌𝜌 1 − 𝜌𝜌 𝑝𝑝𝑝𝑝

𝑇𝑇2𝑖𝑖 = 0 1 − 𝜌𝜌 𝑝𝑝𝑝𝑝 𝑞𝑞2 + 𝜌𝜌𝜌𝜌𝜌𝜌

JRR: Joint distribution
𝜌𝜌 ∈ [−1,1]:
correlated coefficient

 RR is a special case of JRR with 𝜌𝜌 = 0  (no correlation)
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 Correlated randomization with 2 persons 𝑥𝑥2𝑖𝑖−1 and 𝑥𝑥2𝑖𝑖

𝑇𝑇2𝑖𝑖−1 = 1 𝑇𝑇2𝑖𝑖−1 = 0

𝑇𝑇2𝑖𝑖 = 1 𝑝𝑝2 + 𝜌𝜌𝜌𝜌𝜌𝜌 1 − 𝜌𝜌 𝑝𝑝𝑝𝑝

𝑇𝑇2𝑖𝑖 = 0 1 − 𝜌𝜌 𝑝𝑝𝑝𝑝 𝑞𝑞2 + 𝜌𝜌𝜌𝜌𝜌𝜌

JRR: Joint distribution
𝜌𝜌 ∈ [−1,1]:
correlated coefficient

Utility Theorem. The variance of JRR’s estimator �𝒏𝒏𝒗𝒗 is

Var �𝒏𝒏𝒗𝒗 =
𝑝𝑝𝑝𝑝

𝑝𝑝 − 𝑞𝑞 2 ⋅ 𝑛𝑛 +
𝜌𝜌 2𝑛𝑛YES − 𝑛𝑛 2 − 𝑛𝑛

𝑛𝑛 − 1
.



Privacy: NOT as Simple as RR
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 If any person can be an adversary

𝑇𝑇1 = 1 𝑇𝑇1 = 0

𝑇𝑇2 = 1 0.6 0.2

𝑇𝑇2 = 0 0.2 0

JRR: Joint distribution
𝑇𝑇1: I am an adversary

When I report untruthfully (𝑇𝑇1 = 0),
My partner will report truthfully (𝑇𝑇2 = 1)
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 If any person can be an adversary

𝑇𝑇1 = 1 𝑇𝑇1 = 0

𝑇𝑇2 = 1 0.6 0.2

𝑇𝑇2 = 0 0.2 0

JRR: Joint distribution
𝑇𝑇1: I am an adversary

When I report untruthfully (𝑇𝑇1 = 0),
My partner will report truthfully (𝑇𝑇2 = 1)

 Correlation results in privacy leakage 
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 Threat model:

- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner (after random grouping) 
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 Randomly groups into form 2-person groups for correlated randomization

 Threat model:

A person

Partner is 
NOT an adversary

Partner is 
an

Pr =
# 
# 

- if a group contains an adversary, the adversary knows who is their partner (after random grouping) 

- the adversary cannot control randomness, but can infer their partner’s

Pr person | =
1 − 𝜌𝜌 𝑝𝑝𝑝𝑝

𝑝𝑝 Higher confidence
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Privacy Theorem. Assume a set of data contributors 𝒯𝒯𝑚𝑚 whose reporting truthfulness 
is known to the adversary. For any data contributor 𝑖𝑖, the JRR mechanism satisfies:

Pr  JRR 𝑥𝑥𝑖𝑖  |𝒯𝒯𝑚𝑚
Pr  JRR 𝑥𝑥𝑖𝑖′  |𝒯𝒯𝑚𝑚

≤ 𝑒𝑒𝜀𝜀 , 𝜀𝜀 = ln
𝑚𝑚𝑝𝑝max + 𝑛𝑛 −𝑚𝑚 − 1 𝑝𝑝
𝑚𝑚𝑝𝑝min + 𝑛𝑛 −𝑚𝑚 − 1 𝑞𝑞

.where

𝑝𝑝max = max{ 1 − 𝜌𝜌 𝑝𝑝,𝑝𝑝 + 𝜌𝜌𝜌𝜌}:
confidence of adversaries 
inferring a specific value

Privacy affected by

𝑚𝑚 # adversaries

𝑛𝑛 # of persons

𝜌𝜌 Correlated coefficient
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Privacy Theorem. Assume a set of data contributors 𝒯𝒯𝑚𝑚 whose reporting truthfulness 
is known to the adversary. For any data contributor 𝑖𝑖, the JRR mechanism satisfies:

Pr  JRR 𝑥𝑥𝑖𝑖  |𝒯𝒯𝑚𝑚
Pr  JRR 𝑥𝑥𝑖𝑖′  |𝒯𝒯𝑚𝑚

≤ 𝑒𝑒𝜀𝜀 , 𝜀𝜀 = ln
𝑚𝑚𝑝𝑝max + 𝑛𝑛 −𝑚𝑚 − 1 𝑝𝑝
𝑚𝑚𝑝𝑝min + 𝑛𝑛 −𝑚𝑚 − 1 𝑞𝑞

.where

Utility Theorem. The variance of JRR’s estimator �𝒏𝒏𝒗𝒗 is

Var �𝒏𝒏𝒗𝒗 =
𝑝𝑝𝑝𝑝

𝑝𝑝 − 𝑞𝑞 2 ⋅ 𝑛𝑛 +
𝜌𝜌 2𝑛𝑛YES − 𝑛𝑛 2 − 𝑛𝑛

𝑛𝑛 − 1
.
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Privacy Theorem. Assume a set of data contributors 𝒯𝒯𝑚𝑚 whose reporting truthfulness 
is known to the adversary. For any data contributor 𝑖𝑖, the JRR mechanism satisfies:

Pr  JRR 𝑥𝑥𝑖𝑖  |𝒯𝒯𝑚𝑚
Pr  JRR 𝑥𝑥𝑖𝑖′  |𝒯𝒯𝑚𝑚

≤ 𝑒𝑒𝜀𝜀 , 𝜀𝜀 = ln
𝑚𝑚𝑝𝑝max + 𝑛𝑛 −𝑚𝑚 − 1 𝑝𝑝
𝑚𝑚𝑝𝑝min + 𝑛𝑛 −𝑚𝑚 − 1 𝑞𝑞

.where

Utility Theorem. The variance of JRR’s estimator �𝒏𝒏𝒗𝒗 is

Var �𝒏𝒏𝒗𝒗 =
𝑝𝑝𝑝𝑝

𝑝𝑝 − 𝑞𝑞 2 ⋅ 𝑛𝑛 +
𝜌𝜌 2𝑛𝑛YES − 𝑛𝑛 2 − 𝑛𝑛

𝑛𝑛 − 1
.Var �𝒏𝒏𝒗𝒗 =

𝑝𝑝𝑝𝑝
𝑝𝑝 − 𝑞𝑞 2 ⋅ 𝑛𝑛 +

𝜌𝜌 2𝑛𝑛YES − 𝑛𝑛 2 − 𝑛𝑛
𝑛𝑛 − 1

.minimize

𝜀𝜀 = ln
𝑚𝑚𝑝𝑝max + 𝑛𝑛 −𝑚𝑚 − 1 𝑝𝑝
𝑚𝑚𝑝𝑝min + 𝑛𝑛 −𝑚𝑚 − 1 𝑞𝑞

.privacy constraint
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 Effect of 𝜌𝜌 and 𝑝𝑝 (when 𝜀𝜀 = 1, 𝑛𝑛 = 104,𝑛𝑛Yes = 200, and 𝑚𝑚 = 0 & 500)

Feasible region of
𝜌𝜌 and 𝑝𝑝
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Low variance region
of JRR

 Effect of 𝜌𝜌 and 𝑝𝑝 (when 𝜀𝜀 = 1, 𝑛𝑛 = 104,𝑛𝑛Yes = 200, and 𝑚𝑚 = 0 & 500)

Feasible region of
𝜌𝜌 and 𝑝𝑝
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Experiments

 Comparison with RR under the same privacy level - JRR: 𝜀𝜀(𝑛𝑛,𝑚𝑚,𝜌𝜌,𝑝𝑝),  RR: 𝜀𝜀(𝑝𝑝)

Real-world datasets (𝜀𝜀 = 0.1) Synthetic datasets (𝑛𝑛 = 104)
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Experiments
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real-world datasets

Much smaller MSE 
when 𝜀𝜀 is small
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Experiments

 Comparison with RR under the same privacy level - JRR: 𝜀𝜀(𝑛𝑛,𝑚𝑚,𝜌𝜌,𝑝𝑝),  RR: 𝜀𝜀(𝑝𝑝)

Real-world datasets (𝜀𝜀 = 0.1) Synthetic datasets (𝑛𝑛 = 104)

Smaller MSE for 
real-world datasets

Much smaller MSE 
when 𝜀𝜀 is small

 Correlated randomization can improve the data utility of frequency estimation

 JRR:  Privacy & utility model for correlated randomization



Locally Differentially Private Frequency Estimation via
Joint Randomized Response

Thank you!
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 No need for securing shuffling: 

Privacy Model

YES

YES

Collector

YES

NO

YES

- when one person hold multiple items

JRR

JRR
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