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Frequency Estimation

How many people engage in tax evasion?

- ask one person if they had evaded tax

- the person answers YES or NO

® Collector
& YES >
& NO >
0
>
& NO =3 Frequency = # of YES
& VYES >
& NO >
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Randomized Response for Privacy

= People have privacy concerns on sensitive/embarrassing question

- i.e.don’t want to let the collector know
= Aprivacy mechanism M satisfies LDP if

For any truth x, x, Pr[M(x;) = y]

: max < e’
and randomized answer y: Pr[M (x,) = y]
Distinguishability of x4 and x,
fromy
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Randomized Response for Privacy

= People have privacy concerns on sensitive/embarrassing question

- i.e. don’t want to let the collector know

= Aprivacy mechanism M satisfies LDP if

Foranytruthxy,x,, Pr[M(x,) =yl < ot
and randomized answer y: Pr[M(x,) =y] —
Distinguishability of x; and x,
fromy
- to distinguish x; and x, from the randomized answer y

. . . X
- against inference from data collectors jj] or adversaries
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Randomized Response for Privacy

= People have privacy concerns on sensitive/embarrassing question

- i.e. don’t want to let the collector know

= Randomized Response: Randomize the truth

® Collector
e YES— RR — NO—

& NO — RR — NO—>

O

@ NO — RR — YES—>

& YES— RR —> YES—>

‘ NO — RR — NO—
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Pr[RR(x,) = y] In-2—

Randomized Response for Privacy  ™*gmrey=5=¢

Private

RR: [Warner, 1965]

= People have privacy concerns on sensitive/embarrassing questi s S e el

- i.e.don’t want to let the colle NnOW
X W.p. p

RR(x) = {—.x w.p.1—0p

= Randomized Response/Randomize the truth

Collector

‘ YES—> RR — NO—
& NO — RR — NO—>
®

@ NO — RR — YES—>
& YES— RR —> YES—>
‘ NO — RR — NO—
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Pr[RR(x,) = y] In=P—

Randomized Response for Privacy  ™*gmrey=5=¢

Private

RR: [Warner, 1965]

= People have privacy concerns on sensitive/embarrassing questi s S e el

-i.e.don’t want to let the colle now
RR(x) = { X W.p. p
= Randomized ResponseRandomize the truth )= \—x w.p.1—p
® Collector
e YES— RR — NO—
‘ NO — RR —> NO —> estimated frequency
& NO — RR —> YES—> 3 _ #Oof YES — # & Xq
& YES— RR — YES—> p—q
e Unbiased:
@@ NO—> RR —> NO— expectation = truth
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Utility: RR’s Variance

» Randomization reduces data utility

#of YES — #4 xq | Var[# of YES]
P—q (r — @)?

Var|

- summation of variance from n independent randomization
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Utility: RR’s Variance

» Randomization reduces data utility

#of YES — #4 xq | Var[# of YES]
P—q (r — @)?

Var|

- summation of variance from n independent randomization

- largerp — lower variance — larger privacy parameter &

T data utility ! privacy
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Utility: RR’s Variance

» Randomization reduces data utility

#of YES — #4 xq | Var[# of YES]
P—q (r — @)?

Var|

- summation of variance from n independent randomization

- largerp — lower variance — larger privacy parameter &

T data utility é: :é ! privacy

{- Q: Can we improve this privacy-utility tradeoff?
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Utility: RR’s Variance

= Randomization reduces data utility

#of YES — #4 xq | Var[# of YES]
P—q (r — @)?

Var|

- summation of variance from n independent randomization

- largerp — lower variance — larger privacy parameter &

T data utility ! privacy

= Q:Canweimprove this privacy-utility tradeoff?

- yes, by correlated randomization
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This Paper: Joint RR

= JRR:Better data utility by joint randomization

Ye Zheng
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This Paper: Joint RR (JRR)

= JRR:Better data utility by joint randomization

= Example: 2-person (x;, = YES and x, = YES)withp = 0.8 (P|7 = 1| = 0.8)

RR: Joint distribution

7 =1 T, =0 Trutglffillness
0.64 0.16
(= p?) (= pq)
0.16 0.04
(= pq) (= q°)
Truthfulness
of x,
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This Paper: Joint RR

= JRR:Better data utility by joint randomization

= Example: 2-person

RR: Joint distribution
T1 == 1 T]_ - O
=1 0.64 0.16
I =0 0.16 0.04

Truthfulness
Of xZ

Independent T, and T,

Joint probability = I1 of marginal probabilities

withp = 0.8

Frequency Estimation via Joint Randomized Response
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This Paper: Joint RR (JRR)

= JRR:Better data utility by joint randomization

= Example: 2-person (x;, = YES and x, = YES)withp = 0.8 (P|7 = 1| = 0.8)

RR: Joint distribution JRR: Joint distribution

Truthfulness
Of xz

Independent T]_ and Tz (P[Tl N Tz] =P Tl] : P[Tz])
Joint probability =J of margina| probabilities requency Estimation via Joint Randomized Response 15




This Paper: Joint RR (JRR)

= JRR:Better data utility by joint randomization Same marginal prob for
, each person
= Example: 2-person (x, = YESand x, = YES)withp = 0.8 (P|7T = 1| = 0.8) < \
I
RR: Joint distribution JRR: Joint distrif P71 =1=08 ]

Truthfulness
Of xz

Independent T]_ and Tz (P[Tl N Tz] =P Tl] : P[Tz])
Joint probability =J of margina| probabilities requency Estimation via Joint Randomized Response 16




This Paper: Joint RR (JRR)

= JRR:Better data utility by joint randomization Same marginal prob for
. each person
= Example: 2-person (x, = VESandx, = YES)withp = 0.8 (P|T = 1| = 0.8) < \
|
RR: Joint distribution JRR: Joint distrit’\[n/= /=08 }
T1=1 T1=O T1=1 T1=0
0.64 0.16 0.6 0.2
(= p?) (= pq) (= p%+ ppq) | (=pq — ppq)
0.16 0.04 0.2 0]
(= pq) (= q?) (=pq —ppq) | (=4q*+ ppq)

Truthfulness
of x, P[T;=0NnT,=0]=0=+P[T; =0]:P[T, = 0]=0.04

NOT independent %

Joint probability = IT of marginal probabilities [reauencyEstimatio]  Joint probability # IT of marginal probabilities




Utility: JRR’s Variance

= Sameestimator as RR

Ye Zheng

Ha

E[# of YES] = z P[y; = YES] =nyps p+ (#& — nyps) - q

T T

Expectation Ground truth
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Utility: JRR’s Variance

= Sameestimator as RR

Ye Zheng

#en
E[# of YES] = z P[y; = YES] = nygs P + (#& — nygs) - q
i=1
— Unbiased estimator fiygs = A Ofgisl_zq

|dentical to RR
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Utility: JRR’s Variance

= Variance: (#& =2,p = 0.8)

Ye Zheng

Var[# of YES]
(0.8 —0.2)%

Var[fiygs] =

Locally Differentially Private Frequency Estimation via Joint Randomized Response
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Utility: JRR’s Variance

= Variance: (#& =2,p = 0.8) Z & Randomized
Varfive] Var[# of YES
dI'|Nygg| = YES YES/NO
(0.8 —0.2)% —>RR/JRR—>
YES YES/NO
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Utility: JRR’s Variance

= Variance: (#& =2,p = 0.8)

Var[# of YESz

e Randomized
Varlives] = o802z | YES YES/NO
YES YES/NO
RR JRR

# of YES o 1 | 2 # of YES 0 1 2

Probability 0.04 ‘ 0.16 + 0.16 ‘ 0.64 Probability 0 0.2+ 0.2 0.6
Var[# of YES] =0.32 Var[# of YES] = 0.24
—

pquency Estimation via Joint Rar




Utility: JRR’s Variance

= Variance: (#& =2,p = 0.8) Z & Randomized
Varfive] Var[# of YES
dI'|Nygg| = YES YES/NO
(0.8 —0.2)% —>RR/JRR—>
YES YES/NO

= Distribution table: .
Better utility

RR R (near to u)
# of YES o 1 # of YES 0 2
Probability 0.04 ‘ 0.16 + 0.16 ‘ Probability 0 \ 0.6
| 7 N
Var[# of YES] =0.32 Var[# of YES] = 0.24

I NS

pquency Estimation via Joint Rar




JRR’s General Form

= Correlated randomization with 2 persons x,;_; and x;

JRR: Joint distribution

p

T4 =1 Tzi—1;f)/v correlated coefficient
Ty =1 p’>+ppq | (1-pIPq

Ty = (1-ppg | q*+ppg

= RRisaspecial case of JRRwithp =0

Ye Zheng
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JRR’s General Form

= Correlated randomization with 2 persons x,;_; and x;

Ye Zheng

JRR: Joint distribution

D
Ti-1=1 TZi_l;y correlated coefficient
Ty =1 p>+ppq | (1-piPq

T,; =0 (1-ppq | q*+ppq

Utility Theorem. The variance of JRR’s estimator n,, is

g p((2nygs —n)? —n)
_(p—q)2'<n+ n—1 )

Var|[n,]

Locally Differentially Private Frequency Estimation via Joint Randomized Response
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Privacy: NOT as Simple as RR

= |f any person can be an adversary

. . . . T:: 1 d o o

JRR: Joint distribution 1- fam anadversary 1
T1 =1 Tl =0

T, =1 0.6 0.2

When | report untruthfully
My partner will report truthfully
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Privacy: NOT as Simple as RR

= |f any person can be an adversary

. . L . . T,:1am an adversary (o s
JRR: Joint distribution . Y }
T1 - 1 Tl — O
T, =1 0.6 0.2
T, =0 0.2 0]
When | report untruthfully
My partner will report truthfully

[- Correlation results in privacy leakage ]
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JRR - Privacy Model

= Randomly groups into form 2-person groups for correlated randomization

Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response
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JRR - Privacy Model

= Threat model:

X
- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner

Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response
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JRR - Privacy Model

= Threat model:

X
- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner

Partneris
Samd
on 23

A person

Partneris
NOT an adversary
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JRR - Privacy Model

= Threat model:

X
- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner

{ ;
Pr = s
- Partner is
.
A person
Partner is
NOT an adversary

Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response
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JRR - Privacy Model

= Threat model:

- the adversary cannot control randomness, but can infer their partner’s

1 —
—> Pr[person |&3}] = ( pp)pq Higher confidence

Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response
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JRR - Formal Privacy & Utility

Ye Zheng

( )
Privacy Theorem. Assume a set of data contributors 7;,, whose reporting truthfulness
is known to the adversary. For any data contributor i, the JRR mechanism satisfies:
Pr[ JRR(x;) T3] 5 . MPmax + (n—m—1p
P RRG) | T,] = e E T N —m = Dg
r X; m min -t
- l /\ N\ y,

~

o

Privacy affected by

N

# adversaries

# of persons o

Correlated coefficient

/

Pmax = max{(1 — p)p,p + pq}:

confidence of adversaries

Locally Differentially Private Frequency Estimation via Joint Randomized Response
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JRR - Formal Privacy & Utility

Privacy Theorem. Assume a set of data contributors 7;,, whose reporting truthfulness
is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

Pr[ JRR(x;) |73 ]
Pr[ JRR(x]) |7 | ~

MPmax + (M —m —1)p
MPmin + (M —m —1)q

ef, where & =1In

Utility Theorem. The variance of JRR’s estimator n,, is

Var[fi, ] = Pq <n N p((2nygs —n)? — n))

RN

n—1

Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response
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privacy constraint

Pq (n . p((2nygs —n)? — n))_

minimize Var[#i,,]

-2 n—1




JRR - Variance Heatmap

= Effectofpandp (whene = 1,1 = 10% ny.. = 200, and m = 0 & 500)

0 ¢ Var(p, p)
RR |
0.1 gion of | 5310
QU
» -0.2
=
= .03 3x104
g
: ‘i
O -04
'0.5 _ 1)(104
-0.6 —

0.65 0.7 0.75
Probability p
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JRR - Variance Heatmap

= Effectofpandp (whene = 1,71 = 10% ny.. = 200, and m = 0 & 500)

U - Var(p, p)
RR |

-0.1 region of ) 10
SY
= -0.2 .
E 0.3 (Low variance region
= of JRR
—~
S 0.4 "\ _ J

-05 m=500 II m=0 1 1x10°

-0.6 : ||

0.65 0.7 0.75
Probability p
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Experiments

= Comparison with RR under the same privacy level

x10°

2.5

—o—JRR|(n1/n = 0.01)
—#—JRR|(n1/n =0.1)

107 & ——JRR|(ny/n =1
1.5-
0 omo .
= p=
1 5
107 |
0.5
0. . , . . J
Kosarak ~ Amazon EC Census 0.01 0.02 0.05 0.1 0.2 0.5 |
£
Real-world datasets (¢ = 0.1) Synthetic datasets (n = 10%)
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Experiments

= Comparisonwith RR under the same privacy level - JRR: =(n,m, p,p), RR:=(p)

Smaller MSE for
real-world datasets 10° when ¢ is small

Much smaller MSE

——JRR|(n;/n = 0.01)
—#—JRR|(n1/n =0.1)
—t+—JRRf(n1/n =1

0.01 0.02 005 0.1 0.2 05 1

E
Real-world datasets (¢ = 0.1) Synthetic datasets (n = 10%)

0 i
[Kosarak__Amazon EC Census |
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Experiments

= Comparisonwith RR under the same privacy level - JRR: =(1,m,p,0), RR:2(p)

Smaller MSE for Much smaller MSE

real-world datasets when ¢ is small

——JRR|(n;/n = 0.01)
—#—JRR|(n1/n =0.1)
—+—JRR}(n1/n=1
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Locally Differentially Private Frequency Estimation via
Joint Randomized Response

Randomized Response for Privacy

Pr[RR(x;) = y]

Ing2-
_— < 1-p
Pr[RR(x;) = y]

max

= People have privacy concerns on sensitive/embarrassing questi

-i.e.don’t want to let the collectoFknow

= Randomized Response/Randomize the truth

Private
RR: [Warner, 1965]
answer truth with probability p

x Ww.p. p
RR(x) = {—|x w.p.1—p

° Collector
@ YES— RR — NO—>
; NO — RR — NO — estimated frequency
@ NO — RR — YES—> 3 _#of YES— # & xq
& YES— RR — YES—> p—q
° Unbiased:
& NO — RR — NO—> expectation = truth
Ye Zheng Locally Differentially Private Frequency Estimation via Joint Randomized Response 7

JRR’s General Form

= Correlated randomization with 2 persons x,;_; and x,;

JRR: Joint distribution

p
Ty =1 ‘ TZi_l;% correlated coefficient
p* +ppq ‘ 1 -ppq

1 -prgq ‘ a* + ppq

= RRisaspecial case of JRRwithp =0

ion via Joint

Locally Differentially Private Frequency

Ye Zheng

Response 24

This Paper: Joint RR

= JRR:Better data utility by joint randomization

Independent Ty and T,

= Example: 2-person withp = 0.8
RR: Joint distribution JRR: Joint distriJ A = 0)=0E
=1 =0 T =1 \ T, =0
=1 0.64 0.16 =1 0.6 0.2
m— 0.16 004 m— 0.2 ‘ 0
Truthfulness
0=+ 0.04

of x,
NOT independent Tﬁrﬁh\

Joint probability # I1 of marginal probabilities

‘ Joint probability = I1 of marginal probabilities I“eq“e"tv Estimatio)

JRR - Privacy Model

= Threat model:

- the adversary cannot control randomness, but can infer their partner’s

1-p)pq

——> Pr[person |{5}] = ( » Higher confidence

Locally Differentially Private Frequency fon via Joint Response 32

Ye Zheng

Thank you!

Utility: JRR’s Variance

= Variance: (#& =2,p = 0.8)

N Var([# of YES
Var[fiygs] =

Better utility

(0.8 —0.2)?

a Randomized
YES YES/NO
YES YES/NO

RR R (near to u)
# of YES 0 1| #of YES 0 2
Probability 0.04 0.16 + 0.16 ‘ Probability 0 0.6
Var[# of YES] =0.32 Var[# of YES] =0.24
T
‘ Fquency Estimation via Joint Ra/‘
JRR - Variance Heatmap
= Effectofpandp
0
0.1 Feasible region of
pandp
S8
502
2 . .
E 203 Low variance region
[ of JRR
3
O -04 N
0.5
0.6
0.65 0.7 0.75
Probability p
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Privacy Model

= No need for securing shuffling:

- when one person hold multiple items

Ye Zheng

Collector

® YES JRR >
[ )

YES >

JRR

YES >
a VYES >

NO >

Locally Differentially Private Frequency Estimation via Joint Randomized Response
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