
Summary of Changes

Note: This document uses the quotation environment to reference content from OGPM_diff.pdf.
Within the quotation environment, newly added or modified content is highlighted in blue. Cross-
references in this document have been updated, so numbering may differ from OGPM_diff.pdf.
References to specific locations in OGPM_diff.pdf are indicated in gray text, e.g. Page 6.

This document summarizes the changes made in the revised version. Section 1 details changes in the
main text, while Section 2 covers changes in the appendix. The key updates are as follows:

1. Softening the optimality claim for m = 3: The claim that m = 3 is optimal (original Theorem
3.7) has been softened to a hypothesis. Monte Carlo results now are presented as support to this
hypothesis. Correspondingly, theorems about optimal instantiations incorporate this hypothesis. To
further substantiate the hypothesis, two directions for an analytical proof and associated challenges
are outlined in the appendix. (Section 1.1 and Section 2.1)

2. Clarifying OGPM’s optimality conditions: The conditions under which OGPM is optimal
are explicitly stated in the main text. Additionally, the appendix discusses the generality of these
conditions and related works on optimality. (Section 1.2 and Section 2.2)

3. Expanded experimental comparisons: Experiments and discussions have been added to
compare OGPM with other mechanisms applicable to bounded numerical domains. These include:
(i) The PM and SW mechanisms with post-processing by truncation; (ii) Variants of the Laplace
mechanism, including the staircase mechanism, the Laplace mechanism with truncation, and the
bounded Laplace mechanism; (iii) Mechanisms from the VMF paper. (Section 1.3 and Section 2.3)

4. Clarifying no post-processing assumption: In the section “Distribution and Mean Estimation,”
it is clarified that the data collector uses the reported values as observed, without applying post-
processing. (Section 1.4)

5. Additional error plots: Whole-domain error plots for ε = 0.4 and ε = 0.8 in the classical domain
have been added. (Section 1.5 and Section 2.4)

6. Removal of inaccurate claim regarding truncation: The footnote and appendix claiming
that truncation of LDP mechanisms may harm the privacy level have been removed. (Section 1.6)

The remainder of this document provides details of the changes made to the main text and appendix,
organized into two sections.

1 Changes in Main Text
This section details the six changes made to the main text of the paper.

1.1 Softening the Optimality Claim for m = 3

(Page 6) The claim that m = 3 is optimal has been softened to a hypothesis. Monte Carlo results are now
presented as support for this hypothesis. The revised content is as follows:

Hypothesis 1.1. (original Theorem 3.7) For any domain D → D, absolute error and square
error metrics, the optimal piecewise-based mechanism falls into 3-GPM.
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Support. We validated this hypothesis for D = [0, 1) by performing Monte Carlo sampling
on 104 random (ε, x) pairs. Theorem 3.6 at Page 5 then extends this optimality to any D.
Given the continuity of the objective functions w.r.t. ε and x, we posit that m = 3 is indeed
the exact optimal. To further support this hypothesis, Appendix 2.1 outlines two directions
for analytical proof and highlights the associated challenges.

Correspondingly, theorems about optimal instantiations will incorporate this hypothesis. The result
for the classical domain is now stated as follows:

Theorem 1.1. (Theorem 3.8 at Page 6) If hypothesis 1.1 holds, then GPM M : [0, 1) → [0, 1)
with the following closed-form instantiation

pdf [M(x) = y] =

{
pε if y ∈ [lx,ε, rx,ε),

pε/ exp (ε) y ∈ [0, 1) \ [lx,ε, rx,ε),

where pε = exp(ε/2),

[lx,ε, rx,ε) =


[0, 2C) if x ∈ [0, C),

x+ [−C,C) if x ∈ [C, 1− C),

[1− 2C, 1) otherwise,

with C = (exp(ε/2)− 1)/(2 exp(ε)− 2), is optimal for [0, 1) → [0, 1) under the absolute error
and square error metric.

OGPM for the circular domain is updated accordingly (Theorem 4.2 at Page 7). Also, at Page 8, we
updated the context and proof of the unbiased OGPM (Theorem 5.1). The current version of this part is
as follows:

Unbiased mean estimation. Note that an unbiased mean estimator can be achieved
by enlarging the output domain D → D̃ε. Mathematically, this involves incorporating the
unbiasedness constraint E[M(x)] = x into optimization problems for solving M. Following
the same optimization process as in the classical domain, we hypothesize that the 3-GPM
remains optimal for domain D̃ε.

Hypothesis 1.2. For any domain D → D̃ε, where D̃ε is a variable w.r.t ε, and under absolute
error and square error metrics, the optimal piecewise-based mechanism falls into 3-GPM.

Under the 3-GPM, an unbiased mechanism M with a variable output domain D̃ε can
be analytically derived by incorporating the unbiasedness constraint. As a complement to
Theorem 3.7, we provide Theorem 1.2 for mean estimation in the classical domain.

Theorem 1.2. (Theorem 5.1) Denote D̃ε = [−C,C+1) with C = (exp(ε/2)+1)/(exp(ε/2)−1).
If Hypothesis 1.2 holds, then among the unbiased GPM M : [0, 1) → D̃ε (i.e. E[M(x)] = x),
closed form

pdf [M(x) = y] =

{
pε if y ∈ [lx,ε, rx,ε),

pε/ exp (ε) y ∈ D̃ε \ [lx,ε, rx,ε),
where p = exp(ε/2)/(2C + 1),

lx,ε =
C + 1

2
· x− (3C + 1)(C − 1)

4C
,

rx,ε =
C + 1

2
· x+

(C + 1)(C − 1)

4C
.

is optimal for [0, 1) → D̃ε and the square error metric.

Proof. The optimality of 3-GPM on [0, 1) → [−C,C + 1) can be proved as in Theorem 3.1,
i.e. m = 3 is optimal. Optimal C, p, lx,ε, and rx,ε are derived by analytical deduction as in
Theorem 3.7. Appendix A.6 proves the unbiasedness.

Hypothesis 1.2 naturally extends Hypothesis 1.1, since D̃ε becomes explicit once ε is specified. Finding
the optimal GPM distribution over D̃ε uses the same optimization approach as for D. Therefore, this
hypothesis is also expected to hold for D̃ε as well.
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1.2 Clarifying OGPM’s Optimality Conditions
(Page 4) We added a paragraph to clarify the conditions under which OGPM is optimal. The content of
the paragraph is as follows:

Conditions for optimality. When discussing optimality, the following aspects should
be specified: (i) the error metric, (ii) the data domain and family of mechanisms, (iii) the
strength of the optimality, and (iv) whether post-processing is allowed. In this paper, the
optimality of GPM is defined with respect to: (i) the worst-case Lp-similar error metric,
(ii) bounded numerical domains D → D̃ and mechanisms based on piecewise distributions,
(iii) minimization of error value (not asymptotic or order-of-magnitude optimality), and (iv)
without post-processing. These conditions are widely applicable in practice and literature.
However, varying any of them may lead to different optimality results. Appendix 2.2 provides
a detailed discussion of these conditions and related optimalities.

1.3 Expanded Experimental Comparisons
(Page 9-10) In the evaluation setup, we expanded the description to include additional mechanisms
applicable to bounded numerical domains. The updated content is as follows:

This section evaluates the theoretical and experimental data utility of our methods by
comparing them with existing instantiations and their variants:

• OGPM: closed-form optimal GPM;

• OGPM-U: unbiased closed-form optimal GPM for mean estimation in the classical
domain;

• PM [8], SW [7], and their post-processed versions: PM is the first TPM designed for mean
estimation, while SW is designed for distribution estimation. Both mechanisms output
enlarged domains but can be post-processed by truncating outputs to the input domain.
These post-processed versions are referred to as T-PM and T-SW for convenience.

• PM-C and SW-C: the compressed versions of PM and SW for D → D. For the best
potential of PM and SW, we adapt them to D → D as PM-C and SW-C by linearly
compressing their output domain D̃ε to D, i.e. transformation invariants, which maintains
the privacy level.

We also compare OGPM’s expected error with non-piecewise-based mechanisms that can be
applied to bounded domains:

• Variants of the Laplace mechanism: including the staircase mechanism [3], Laplace
mechanism with post-processing by truncation (T-Laplace), and the bounded Laplace
mechanism (B-Laplace) [6], which designs a bounded Laplace-shape distribution.

• Purkayastha mechanism [9]: a mechanism for directional data on spheres Sn−1. When
n = 2, it is a counterpart of OGPM in the circular domain.

(Page 11-12) We added experimental results and discussions comparing OGPM with the aforementioned
new mechanisms. The content of this part is as follows:

1.3.1 Comparison with PM and SW

Figure 1 presents the comparison of the whole-domain error in the classical domain for the
original PM and SW mechanisms, along with their post-processed versions, T-PM and T-SW.
For a fair comparison, OGPM is adapted to the domain D = [−1, 1) to match PM’s design,
while SW and OGPM remain consistent with D = [0, 1). The post-processing of PM and SW
involves truncating their outputs in the enlarged domain to the input domain, i.e. applying
I ◦M(x), where I : D̃ → D is the truncation operator. We use the distance metric L = |y−x|2
and set ε = 2 for the comparison among these five mechanisms. It can be observed that OGPM
consistently achieves the lowest error across all x values, with a more significant advantage
compared to the comparison with PM-C and SW-C. This is because the original PM and SW
output larger domains, resulting in higher errors. Meanwhile, T-PM reduces the error of PM
more effectively than T-SW reduces the error of SW, as the original PM has a more enlarged
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output domain than SW, making truncation more impactful. This comparison highlights
OGPM’s error advantage over the original PM, SW, and their post-processed versions when
applied to their respective data domains.
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Figure 1: Whole-domain error comparison with PM and SW on their data domains (i.e. D = [−1, 1)
and D = [0, 1), respectively) when ε = 2.

1.3.2 Comparison with the Staircase Mechanism, T-Laplace, and B-Laplace

In addition to piecewise-based mechanisms, the Laplace mechanism and its variants can also
be applied to the classical domain to achieve LDP. Among these, the staircase mechanism [3]
claims to be optimal under certain assumptions. For the input domain D = [0, 1) (i.e.
sensitivity ∆ = 1) and error metric L = |y − x|, its expected error is given by Theorem 3
in [3]: exp(ε/2)/(exp(ε)− 1). Another approach involves using the Laplace mechanism with
truncation [6], referred to here as T-Laplace for convenience. T-Laplace preserves the privacy
guarantees of the Laplace mechanism while reducing the expected error, particularly for data
points near the endpoints or for small ε values. Additionally, the bounded Laplace mechanism
(B-Laplace) [6] introduces a redesigned bounded Laplace-shaped distribution tailored for
bounded domains.∗
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Figure 2: Whole-domain error comparison with the staircase mechanism [3], T-Laplace and
B-Laplace mechanisms [6] in the classical domain with error metric L = |y − x|.

Figure 2 compares the whole-domain error in the classical domain D = [0, 1) for the
staircase mechanism, T-Laplace, and B-Laplace. These mechanisms exhibit distinct error
patterns across the domain. For the staircase mechanism, the error remains constant, as it is
determined by a fixed staircase distribution and is independent of x. For T-Laplace, the error
reaches its maximum at the midpoint and its minimum at the endpoints, as truncation favors
the endpoints. For instance, when x = 0, it is error-free with a probability of 1/2, due to the
symmetry of the Laplace distribution around 0. For B-Laplace, the error trend varies with ε.
When ε = 2, the error decreases with x and reaches its minimum at the midpoint, whereas

∗Appendix 2.3 provides details on the expected error of B-Laplace.
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for ε = 4, the error increases with x and peaks at the midpoint. Despite these differing
error patterns, OGPM consistently achieves lower errors than the staircase mechanism and
T-Laplace across the whole domain.

Figure 3 compares the worst-case error w.r.t. ε in the classical domain. OGPM consistently
achieves the lowest worst-case error across all ε values. For small ε, T-Laplace and B-
Laplace exhibit a significant advantage over the staircase mechanism; however, this advantage
diminishes as ε increases. At larger ε values, the error of the staircase mechanism approaches
that of OGPM.
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Figure 3: Worst-case error
comparison (continued from

Figure 2).
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Figure 4: Comparison with the
Purkayastha mechanism [9] for

sphere Sn−1.

1.3.3 Comparison with the Purkayastha Mechanism

The paper “Differential Privacy for Directional Data” [9] introduces two mechanisms for data
on spheres Sn−1: the VMF mechanism (ensuring indistinguishability of any two points with
distance through the sphere) and the Purkayastha mechanism (ensuring indistinguishability of
any two points with distance along the sphere). When n = 2, the sphere S1 corresponds to a
circle, making the Purkayastha mechanism a counterpart of OGPM in the circular domain.
Therefore, we compare them in the circular domain.†

Figure 4 presents the comparison of the expected error in the circular domain between
OGPM and the Purkayastha mechanism. The expected error of the Purkayastha mechanism is
derived using the closed-form expressions in Theorem 19 and 22 of [9], with κ = ε/∆∡. Since
the errors of both mechanisms are x-independent in the circular domain, it suffices to compare
their worst-case errors. The results demonstrate that OGPM consistently outperforms the
Purkayastha mechanism, achieving significantly lower errors.

(Page 6) We also weakened the claim regarding LDP mechanisms for the circular domain; it now states
that none of the existing piecewise-based mechanisms address this type of domain. The first paragraph of
the section “Optimal GPM for Circular Domain” is now as follows:

This section presents the optimal GPM for the circular domain, another type of bounded
domain. Circular domains are widely used in cyclic data such as time, angle, and compass
direction. However, none of the existing piecewise-based mechanisms consider this type of
domain, limiting their applicability.

1.4 Clarifying No Post-processing Assumption
(Page 8) In the section “Distribution and Mean Estimation,” we clarified that the data collector uses the
reported values as observed, without applying any post-processing. The revised second paragraph is as
follows:

†We omit the comparison with the VMF mechanism also because (i) it has been shown that the Purkayastha mechanism
outperforms the VMF mechanism (with the same sensitivity ∆∡ = π for sphere S1, e.g. Figure 5 and 10 in [9]), and (ii) the
expected error of the VMF mechanism lacks a closed-form expression (Theorem 17 in [9]), making it complex to compute.
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Assume a set of users with sensitive data X = {x1, x2, . . . , xn}. They apply M to produce
randomized outputs Y = {y1, y2, . . . , yn}. The data collector then estimates the distribution
and mean of X using Y. Specifically, the collector uses the values in Y as it is, i.e. without
knowing and applying any post-processing based on prior knowledge of X .

1.5 Additional Error Plots
(Page 11) We added a sentence to reference the whole-domain error plots at ε = 0.4 and ε = 0.8 for the
classical domain, which are provided in the appendix. The content of the paragraph is as follows:

Classical Domain. Figure 8 shows . . .More comparisons under smaller ε values are
provided in Appendix 2.4.

1.6 Removal of Inaccurate Claim Regarding Truncation
(Page 3) We removed the inaccurate claim regarding truncation in the footnote. Specifically, the footnote
is now as follows:

While post-processing the output by truncating it to D is possible, this approach may still
result in low data utility. Sections 1.3.1 and 1.3.2 provide comparisons with mechanisms that
include truncation.

2 Changes in Appendix
This section details changes made to the appendix of the paper.

2.1 (Appendix B.3) Directions for Analytically Proving Optimal m = 3

(Page 18) This appendix outlines two potential directions for analytically proving that the optimal m is 3,
along with the challenges associated with each approach. The content of the appendix is as follows:

Mathematically, finding the optimal m-piecewise mechanism is equivalent to identifying
the optimal m-piecewise distribution under an Lp-similar error metric. It is seemingly true
that the optimal m is 3: if the optimal m-piecewise distribution is not 3 but 4 or more, we
can always shift the probability mass from the two side intervals (i.e. other pieces) to the
central interval, thereby reducing the error. At the very least, the following fact holds:

Fact 2.1. The optimal m-piecewise distribution has a strict staircase shape, i.e. the probability
density of the central interval is greater than that of the two side intervals.

0 0.5

[ ]pdf y
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x

(a) Non-staircase distribution.

0 0.5

[ ]pdf y

1
x

(b) Staircase distribution.

Figure 5: A non-staircase distribution (left) can always be shifted into a staircase distribution
(right) by moving some pieces closer to x, which reduces the error.

Figure 5 illustrates this fact. Moving pieces while keeping their probabilities unchanged
clearly maintains both the ε-LDP constraint and the probability normalization constraint.
This observation reduces the problem to proving that a 3-staircase distribution can achieve the
same optimal error as a 4-staircase distribution under the ε-LDP and probability normalization
constraints.

6



Direction 1: If we can further move the green piece in Figure 5b “into” the red central
piece while keeping the probabilities of the red and blue pieces unchanged, i.e. transform it
into a 3-staircase distribution while ensuring a decrease in the error, then we can prove that
the optimal m is 3. However, this is challenging, as it breaks the probability normalization
constraint, also requiring adjustments to the probabilities of each piece to satisfy the ε-LDP
constraint. The challenge arises here: it is hard to ensure that these adjustments will indeed
decrease the error.

Direction 2: Another approach is to formulate the problems for 3-staircase and 4-staircase
distributions as two constrained optimization problems. The goal would be to prove that the
optimal error of the 3-staircase distribution is equivalent to that of the 4-staircase distribution.
Ideally, these two multi-variable optimization problems could be solved analytically, resulting
in two closed-form error expressions w.r.t. x and ε, thereby completing the proof for any x
and ε. This direction aligns with our framework. However, the challenge lies in the complexity
of solving such multi-variable optimization problems analytically. This is why we rely on an
off-the-shelf optimization solver, which, while effective, only provides numerical solutions for
specific x and ε values.

2.2 (Appendix B.2) Related Optimality
(Page 17-18) This section of the appendix has been rewritten to update the assumptions underlying
OGPM’s optimality and to provide a more detailed discussion of related optimality concepts. The revised
content is as follows:

In this paper, the optimality of GPM is defined with respect to: (i) the worst-case Lp-
similar error metric, (ii) bounded numerical domains D → D̃ and mechanisms based on
piecewise distributions, (iii) minimization of error value (not asymptotic or order-of-magnitude
optimality), and (iv) without post-processing. Lp-similar error metrics are natural choices
for evaluating data utility [5, 3, 8]. Bounded numerical domains are common in real-world
applications. Focusing on error values allows for more precise comparisons between different
mechanisms. By excluding post-processing, we can analyze the optimality of the mechanism
itself, providing a more fundamental understanding than considering the mechanism combined
with specific post-processing.

Other types of optimality have been explored in the literature, particularly for variants of
Laplace mechanisms. The staircase mechanism [3] adopts the same utility model without prior
knowledge or post-processing as this paper. It claims optimality under specific assumptions,
one of which is that a staircase (piecewise) distribution can achieve the optimal error. The
mechanism demonstrates better L1-error performance than the Laplace mechanism on D̃ =
(−∞,∞), and its asymptotic optimality has been formally proven. Universal optimality
is another type of optimality, defined from the perspective of a user’s prior knowledge and
post-processing ability [4]. In this utility model, the user observes the output of the mechanism
and selects another value based on the output and their prior knowledge, i.e. under a Bayesian
utility framework. Formally, if the user’s prior is denoted as pi on the data domain i ∈ N
(i.e. a discrete domain) and the user’s post-processing is represented as a remap zi,j that
reinterprets the output of the mechanism (on the sensitive value i) to j, then the utility model
is

Err(i) =
∑
i∈N

pi
∑
j∈N

zi,j · L(i, j).

This utility model incorporates the user’s prior knowledge and post-processing ability. A
mechanism is called universally optimal if, for any prior pi, there exists an optimal remap zi,j .
Under this utility model, it was proven that the truncated geometric mechanism (a discretized
version of the Laplace mechanism) can achieve universal optimality for count queries‡ and a
legal error metric L(i, j). Such universal optimality was shown to be unachievable for more
complex queries [1]. Under the same utility model, the universal optimality was extended to
the truncated Laplace mechanism for a bounded numerical domain D = [0, 1] by approximating
the geometric mechanism with the Laplace mechanism and post-processing [2].

These optimality results do not hold in our utility model, i.e. utility model without prior
and post-processing. Figure 2 has shown that OGPM generally has a smaller error than

‡This is in the centralized DP setting, where the data curator holds the dataset and uses one mechanism.

7



the truncated Laplace mechanism, indicating the sub-optimality of the truncated Laplace
mechanism in the absence of prior and post-processing.

2.3 (Appendix B.8) Expected Error of the B-Laplace Mechanism
(Page 19-20) We added the computation of the expected error of the B-Laplace mechanism in the appendix.
This computation, which is not included in the original B-Laplace paper [6], provides additional insights
into its performance. For further details, please refer to OGPM_diff.pdf.

2.4 (Appendix B.7) Comparison under Small ε
(Page 19) We added the whole-domain error plots at ε = 0.4 and ε = 0.8 for the classical domain. The
content of this appendix is as follows:
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(a) Privacy parameter ε = 0.4.
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Figure 6: Whole-domain error comparison in the classical domain with error metric L = |y − x|.

Figure 6 presents the whole-domain error comparison of OGPM, PM-C, and SW-C under
smaller ε values, specifically ε = 0.4 and ε = 0.8. In these scenarios, all three mechanisms
approach the uniform distribution more closely compared to cases with larger ε. Consequently,
their errors are also more similar to each other. Statistically, when ε = 0.4, the error of OGPM
is at most 0.008 smaller than that of PM-C and SW-C. For ε = 0.8, the error of OGPM is at
most 0.015 smaller than that of PM-C and SW-C.
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